
1/13/19

1

Model-Based Testing

Electronic Funds Transfer (EFT)

EFT Switch

Interbank
Network

EFT Switch

Core
Banking
System

2

1/13/19

2

Example Scenarios

EFT Switch Core
Banking
System

POS
Terminal

purchase request

purchase request

purchase response

purchase response

3

Example Scenarios

EFT Switch Core
Banking
System

POS
Terminal

purchase request

purchase request

purchase response
purchase resp.

reversal req.

reversal response
reversal request

4

1/13/19

3

Black-Box Testing

Specification

a
0
1

a b c
idle

Next

Implementation

Let’s see if these
two match

5

Purchase	Use	Case	
Actor: POS (primary), Core (secondary)

Main Flow:
POS sends a purchase request message
Switch sends the purchase request to core
Core sends the purchase response to switch
Switch sends the putchase response to POS

Alternate flows:
1-a) If the received message is not parsable according to the POS/switch protocol, it is discarded and the
use case terminates
1-b) If the received message has invalid format an error message is sent to the POS and the use case
terminates

1-c) If the transaction time, the card type, and the merchant combination is invalid, an appropriate error
message is sent to the POS and the use case terminates
2-a) If the switch is unable to send the message to core, an error message is sent to the POS and the use
case terminates
3-a) If the response from core is not parsable according to the core/switch protocol, the message is

discarded and the switch waits for the core response
3-a-1) If the number of invalid responses received from the core during the use case exceeds 3, an error
message is sent to the POS and is recorded by the system, and the use case terminates
3-b) If the response from core is not received in a certain amount of time, the reversal flow is executed
4-a) If the switch is unable to send the message to the POS, the reversal flow is executed

reversal flow)
The switch sends a reversal notification to POS
The switch sends a reversal request to the core

If the switch is unable to send the message, it records the
failure, and keeps trying to send the message

The core sends a reversal response to the core
If the message is unreadable, or is not received in time, the
switch records the failure, and keeps trying to send the
message

Jason Stringhand

Black-Box Testing

Test Case

6

EFT Switch
POS

Term
inal

purchase request

purchase resp.

reversal req.

reversal response

Jason thinks of a
test scenario to see
if spec. and impl.
behave the same

Specification

a
0
1

a b c
idle

Next

Implementation

Purchase	Use	Case	
Actor: POS (primary), Core (secondary)

Main Flow:
POS sends a purchase request message
Switch sends the purchase request to core
Core sends the purchase response to switch
Switch sends the putchase response to POS

Alternate flows:
1-a) If the received message is not parsable according to the POS/switch protocol, it is discarded and the
use case terminates
1-b) If the received message has invalid format an error message is sent to the POS and the use case
terminates

1-c) If the transaction time, the card type, and the merchant combination is invalid, an appropriate error
message is sent to the POS and the use case terminates
2-a) If the switch is unable to send the message to core, an error message is sent to the POS and the use
case terminates
3-a) If the response from core is not parsable according to the core/switch protocol, the message is

discarded and the switch waits for the core response
3-a-1) If the number of invalid responses received from the core during the use case exceeds 3, an error
message is sent to the POS and is recorded by the system, and the use case terminates
3-b) If the response from core is not received in a certain amount of time, the reversal flow is executed
4-a) If the switch is unable to send the message to the POS, the reversal flow is executed

reversal flow)
The switch sends a reversal notification to POS
The switch sends a reversal request to the core

If the switch is unable to send the message, it records the
failure, and keeps trying to send the message

The core sends a reversal response to the core
If the message is unreadable, or is not received in time, the
switch records the failure, and keeps trying to send the
message

1/13/19

4

Specification by Use Cases

7

Example: Purchase Use Case

Alternate flows:
3-a) If the response from core is not parsable

according to the core/switch protocol, the
message is discarded and the switch waits for
the core response

3-a-1) If the number of invalid responses received
from the core during the use case exceeds 3, an
error message is sent to the POS and is recorded
by the system, and the use case terminates

1/13/19

5

It is not easy to enumerate all possible scenarios
of interaction from informal use case descriptions

including

concurre
ncy

The Problem:

Solution: Model-Based Testing

• Modeling the specification formally
• Deriving test cases (scenarios) from the model

rcv_pos_req?

snd_core_req!snd_pos_resp!

rcv_core_resp? time_out?

13

1/13/19

6

Black-Box Testing

Test Case

14

EFT Switch
POS

Term

inal

purchase request

purchase resp.

reversal req.

reversal response

Jason thinks of a
test scenario to see
if spec. and impl.
behave the same

Specification

a
0
1

a b c

idle

Next

Implementation

Purchase	Use	Case	
Actor: POS (primary), Core (secondary)

Main Flow:
POS sends a purchase request message

Switch sends the purchase request to core

Core sends the purchase response to switch

Switch sends the putchase response to POS

Alternate flows:
1-a) If the received message is not parsable according to the POS/switch protocol, it is discarded and the

use case terminates

1-b) If the received message has invalid format an error message is sent to the POS and the use case

terminates

1-c) If the transaction time, the card type, and the merchant combination is invalid, an appropriate error

message is sent to the POS and the use case terminates

2-a) If the switch is unable to send the message to core, an error message is sent to the POS and the use

case terminates

3-a) If the response from core is not parsable according to the core/switch protocol, the message is

discarded and the switch waits for the core response

3-a-1) If the number of invalid responses received from the core during the use case exceeds 3, an error

message is sent to the POS and is recorded by the system, and the use case terminates

3-b) If the response from core is not received in a certain amount of time, the reversal flow is executed

4-a) If the switch is unable to send the message to the POS, the reversal flow is executed

reversal flow)

The switch sends a reversal notification to POS

The switch sends a reversal request to the core

If the switch is unable to send the message, it records the

failure, and keeps trying to send the message

The core sends a reversal response to the core

If the message is unreadable, or is not received in time, the

switch records the failure, and keeps trying to send the

message

Model-Based Black-Box Testing

cb

a

Specification

a

b

Test Case

15

Jason thinks of a
test scenario to see
if spec. and impl.
behave the same

a
0
1

a b c
idle

Next

Implementation

1/13/19

7

Model-Based Black-Box Testing

cb

a

Specification

a

b

Test Case

16

Jason thinks of a
test scenario to see
if spec. and impl.
behave the same

a
0
1

a b c
idle

Next

Implementation

Equivalence By Observation
rcv_pos_req?

snd_core_req!snd_pos_resp!

rcv_core_req? time_out?

snd_core_req!snd_pos_resp!

rcv_core_req? time_out?

rcv_pos_req?

17

1/13/19

8

Are these equivalent?

a

b

a

b

cd

c d
a

b

a

b

dc

c d

18

?

I/O CONFORMANCE TESTING (IOCO)
THEORY:

19

1/13/19

9

Trace Equivalence

20

a

b

aa

b

traces(S1) = {e, a, ab} traces(S2) = {e, a, ab}

S1 S2

»tr

21

a

b

aa

b

!
But, these two are not “equivalent”

1/13/19

10

Testing Machine v.1

a

b
Next

22

a

a

b
Next

23

Testing Machine v.1

1/13/19

11

b

a

b
Next

24

Testing Machine v.1

a

b
Next

25

No more action: Trace Completed!

Testing Machine v.1

1/13/19

12

Completed Trace Equivalence

I »ctr S

traces(I) = traces(S)

c_traces(I) = c_traces(S)

26

27

a

b

aa

b »ctr

»tr

traces(S1) = {e, a, ab} traces(S2) = {e, a, ab}

S1 S2

c_traces(S1) = {a, ab} c_traces(S2) = {ab}

1/13/19

13

What about these two?

a

c

a

bcb

a

28

»ctr

Testing Machine v.2

a

c

a

b
0
1

a b c
Next

29

The buttons enable or disable actions
that can be performed by the system

1/13/19

14

Testing Machine v.2

a

a

c

a

b
0
1

a b c
Next

30

Testing Machine v.2

a

a

c

a

b
0
1

a b c
Next

31

1/13/19

15

Testing Machine v.2

a

c

a

b
0
1

a b c
Next

32

a a

c

a

Environment System

b b

What Jason did
using switches

33

1/13/19

16

Testing Equivalence

I »te S

for every environment E:

traces(E || I) = traces(E || S)

c_traces(E || I) = c_traces(E || S)
34

Failure Pairs
f-pairs(s) = { (s, A) Î Act ´ 2Act | (s after s) refuses A }
s after s = { s’ | s Þ s’ }
S refuses A = $s Î S . "a Î A . s Þ

35

s

a

bt

s

a
f-pairs(s) = { (e, {b}), (a,{a,b}), (ab,{a,b}) }

1/13/19

17

Testing Equivalence

I »te S

iff

f-pairs(I) = f-pairs(S)

36

There is no sign of “environment” in the definition!

Extensional
Characterization

Intentional
Characterization

I »te S

for every environment E:

traces(E || I) = traces(E || S)

c_traces(E || I) = c_traces(E || S)

I »te S

iff
f-pairs(I) = f-pairs(S)

1/13/19

18

Failure Pairs

a

c

a

bcb

a

38

»te

»ctr

e, {b,c}
a, {a}
ab, {a,b,c}
ac, {a,b,c}

e, {b,c}
a, {a,b, c}
ab, {a,b,c}
ac, {a,b,c}

a

b

a

b

cd

c d
a

b

a

b

dc

c d

39

e, {b,c,d}
a, {a,c,d}
ac, {a,b,c,d}
ad, {a,b,c,d}
ab, {a,c,d}
abc, {a,b,c,d}
abd, {a,b,c,d}Failure-pairs of both systems:

1/13/19

19

Testing Machine v.3

a

c

a

b
0
1

a b c
idle

Next

40

Testing Machine v.3

a

a

c

a

b
0
1

a b c
idle

Next

41

1/13/19

20

a

a

c

a

b
0
1

a b c
idle

Next

42

Testing Machine v.3

Testing Machine v.3

a

c

a

b
0
1

a b c
idle

Next

43

1/13/19

21

Testing Machine v.3

a

c

a

b
0
1

a b c
idle

Next

44

Testing Machine v.3

c

a

c

a

b
0
1

a b c
idle

Next

45

1/13/19

22

Testing Machine v.3

a

c

a

b
0
1

a b c
idle

Next

46

Testing Machine v.3

a

c

a

b
0
1

a b c
idle

Next

47

1/13/19

23

Testing Machine v.3

a

c

a

b
0
1

a b c
idle

Next

48

Testing Machine v.3

a

c

a

b
0
1

a b c
idle

Next

Now, we know that we have completed a trace.

49

1/13/19

24

a

a

c

a

Env

S1

b

b

q

c cb

a

S2occurs if no other
transition can

50

a

Env

S1

b

a

c

a

b

q

c cb

a

S2

c_traces(Env ùïS1) = {ab, aqc}

c_traces(Env ùïS2) = {ab}
51

1/13/19

25

Refusal Equivalence

I »rf S

for every environment E:

traces(E ùï I) = traces(E ùï S)

c_traces(E ùï I) = c_traces(E ùï S)
52

Failure Traces

• Sequence over Act U 2Act

– Single actions denote occurrence of an action
– Action sets denote idle periods with enabled

switches in the action set

• Example:
– {a,b} c d b {b,c} {b,c,d} a Act

53

1/13/19

26

a

c

a

b

Æ, {b}, {c}, {b,c}

Æ, {a}, {b}, {a,b}Æ, {a}, {c}, {a,c}

{a,b,c}, …{a,b,c}, …

States of the switches

Failure Traces and Refusal Self-Loops

54

Refusal Equivalence
(Intensional Characterization)

I »rf S

iff

f-traces(I) = f-traces(S)

55

1/13/19

27

a

b

a

b

cd

c d
a

b

a

b

dc

c d

56

a {d} b c Act Î f-traces(S1)

S1 S2

a {d} b c Act Ï f-traces(S2)

And there is more!

57

You are here!

The Linear Time – Branching Time Spectrum
Rob van Glabbeek

1/13/19

28

Defining specifications at a higher-level

cb

a

Specification

a0
1

a b c
idle

Next

a
0
1

a b c
idle

Next

Impl. 1

Impl. 2

58

d

b

a

d

cb

a

Leaving out some decisions into the implementation

Testing Pre-order

I te S

59

for every environment E:

traces(E || I) Í traces(E || S)

c_traces(E || I) Í c_traces(E || S)

1/13/19

29

Refusal Pre-order

I rf S

60

for every environment E:

traces(E ùï I) Í traces(E ùï S)

c_traces(E ùï I) Í c_traces(E ùï S)

Restriction to Specification

Feature #1
Partial Specification

a0
1

a b c
idle

Next Full Implementation

cb

a a

b

a

c

a

b

Feature #2
Partial Specification

Feature #3
Partial Specification 61

1/13/19

30

Restriction to Specification

I conf S

for every environment E:

traces(E || I) Ç traces(S) Í traces(E || S)

c_traces(E || I) Ç traces(S) Í c_traces(E || S)

62

I/O Transition Systems

Distinguishing between input and output actions

!error!response

?request

!response

?request

64

1/13/19

31

Pre-orders on I/O transition systems

• The same notions apply here
– I/O test pre-order
– I/O refusal pre-order

ior
for every environment E:

traces(E ùï I) Í traces(E ùï S)

c_traces(E ùï I) Í c_traces(E ùï S)

I S

65

I/O Conformance

Informally:
I/O Conformance = I/O Refusal restricted to
specification traces

Feature #1
Partial Specification

a

0

1

a b c

idle

Next

Full Implementation

cb

a

a

b

a

c

a

b

Feature #2
Partial Specification

Feature #3
Partial Specification

I ioco S

66

1/13/19

32

Black-box testing for ioco

cb

a

Specification

a
0
1

a b c
idle

Next

Implementation

a

b

Test Case

67

Example

?b

!a

?b

?b

?b

!a

?b

t

!b

fail passpass

q

q q

?a

?a ?a

68

1/13/19

33

ioco Test Cases

• I/O transition systems
• The only terminal states: and
• Reversed I/O actions
• Special action q
• Finite and deterministic !b

fail passpass

q

q q

?a

?a ?a

pass fail

69

Automatic Test Case Generation

• Init:
– Generate an initial state

• Recursion:
– At each point in the recursion choose non-

deterministically between:
1. Stopping the recursion
2. Supplying an input
3. Observing an output (one transition per output action)

70

1/13/19

34

Testing
Ecosystem

cb

a

Switch Spec.

ioco Test-Case
Generator

(UPPAAL TRON)
a

0
1

a b c
idle

Next

Switch Impl.

A
daptor

Test Result:
pass or fail

(+ counterexample)

Coverage Metrics
(Cobertura)

Offline
Test Suite

Test DB

71

Switch Specification
• Modeled in UPPAAL
• » 25 automata

Simplified behavior of
switch in a Reversal
transaction

72

1/13/19

35

Purchase Transaction

Specification Structure

POS Model Switch Model Core Model
P-S

Connector
S-C

Connector

73

Concurrent Transactions

Purchase Transaction #1

POS #1
Reversal Transaction #2

Purchase Transaction #2

POS #2

One LTS instance per transaction in the Switch
74

1/13/19

36

Business Transaction Model

75

Verifying the Specification

76

A[] forall (i : int[0, MAX_TX]) TransactionFlow[i].start -> TransactionFlow[i].finish

1/13/19

37

Results so far

• Have found a few bugs in the system
– One traced back to null-pointer dereferencing
– Poor exception handling
– Resource pooling problems

• Code coverage of about 40%

77

Final Comments

• Scalability Issues

• Modeling language and tool limitations
– Modeling data-related business rules
– Now using UML Statecharts

• Handling time constraints

78

