Introduction to Formal Methods

Lecture 1
Course Overview
Hossein Hojjat & Fatemeh Ghassemi

September 23, 2018

Course Goals

What is this course about?

Year Project Lines of code
~1960s Apollo 11 mission 145K
[John D. Cressler 2016]
Safeguard Program
~1970s 2M
(US Army anti-ballistic missile system) [John Lamb 1985]
IBM air traffic
~1980s 2M
control systems [Computerworld 1988]
~1990s Seawolf Submarine 3.6M
[Kevin Kelly 1995]
~1990s Boeing 777 4M

[Ron J.Pehrson 1996]

2

L

Android
~ 12M LOC
[Geoff Varrall 2012]

Philips Healthcare MRI scanner
~ 10M LOC

[Pierre Van de Laar, Teade Punter 2011]

Ford GT
~ 10M LOC

[Jamal Hameedi 2015]

Pacemaker Device
~ 100K LOC

[Dev Raheja 2015]

Appolo 11 ‘ Safeguard ‘ Traffic Control ‘ Seawolf Submarine ‘ Boeing 777

145K LOC \ 2M LOC \ 2M LOC

3.6M LOC | amLOC

L

I Philips Healthcare MRI scanner
~ 10M LOC

[Pierre Van de Laar, Teade Punter 2011]

Android
~ 12M LOC
[Geoff Varrall 2012]

~ 10M LOC

[Jamal Hameedi 2015]

~ 100K LOC

[Dev Raheja 2015]

Appolo 11 ‘ Safeguard ‘ Traffic Control ‘ Seawolf Submarine ‘ Boeing 777

145K LOC | 2MLOC | 2MLOC | 36MLOC | 4MLOC

News Headlines

Software glitch in signalling system led
to Joo Koon train collision YAHOO!

NEWS
9 Dhany Osman

Yahoo News Singapore 15 November 2017

guardiar

Setting the date to 1January 1970 will brick your iPhone, iPad or
iPod touch

iTunes

Samuel Gibbs
Friday 12 ebeuary 2016 0B 25T

272172016

B[BIC]

Volvo recalls 59,000 cars over software fault

Volvo recalls 59,000 cars over software fault - BBC News

Q

News Sport Weather Shop Earth Travel

20 February 2016 = Europe

Swedish carmaker Volvo is recalling 59,000 cars across 40 markets over a fault that
can temporarily shut down the engine.

The New Jork Times

http://nyti.ms/10r0eHO
STYLE

Nest Thermostat Glitch Leaves Users in
the Cold

Disruptions
By NICK BILTON JAN. 13, 2016

The Nest Learning Thermostat is dead to me, literally. Last week, my once-

beloved “smart” thermostat suffered from a mysterious software bug that

drained its battery and sent our home into a chill in the middle of the night.

guardian

Bug displays Chrome user's porn hours later
on Apple computer

Student's incognito
game Diablo 111

‘window when he loaded video

Stuart Dredge
Thursday 14 January 2016 0616 EST

Forbes
'Bu.g,‘"Eﬂ‘,kpl(;g;s Uber Driver's Tax Info,
Including Name and Social Security
Number

http:/ fonforb.es/1JFAuKy

News Headlines

OFOF / AV 50 1/ asidh ASVE : 5 35

oGeV - 1P 55

g4

B
tsilae (sbas OB2is) amuwgs oS pusdy
i Wiyl kel S W5 (sleirlus doyd
SUiar 55 Gy
B g0 5o Gy Gilbe 1S (sjle sLad HBais> amugi KIS Lu

o0 S 6 sleSa g 33> isiol S s> slellng 5 Ll 10, E0 L L
S 3985 gl ol 53 ol @ Algs

Sb s SL

e a
c;:z.'"llﬂ- Gloycasguws iy Jus Byl oW

b pilel Sgaino 9 Lol slolSole

) sl 0245039 (315 o jlul o ek S Ll oS I o
ol 3575 & JSuino ol i xS i ing 8 ol culls L3 S5l il o
i il sols Jlsy o cdgm 2> 2isy S 69, | ow s

ZarinPal o
e WA (a8 <014 1 VP Ll 3y 196950 15 35
&3u=| Jbow s oblad 5 Olwgs Couslyus << R

5265 GSL Sl ookl s b 53,8 S sl e 8 s eio
mds,au))fl).u&us)_im.sln);sjjuil)
o 5,500 Lo ey culw S s 1350 o Sl (il i)3 (isiel S Sy hiS
b oS | Y cawl
& ol B el iS5 a eV caw + (Entekhab.ir) Qll Gl s ool

Xz bmﬁ,lﬁylx 3829 Jb o sesls
oo Wl LK aiids 5 el JISBI S5 9 Calo SOU 3590)3 (B EES j1 046 3 b il bl Caclis Niz >
2018 sl 605 @S acgamo oyl @i)

10:01 AN

areees sole: @TLHPDOHIOS

16/6/96 6589 alaie < ol

e < (s3]

),

. . N o L . P =, N .

[O o r oo (13505 gy ST A& 5
ol .

s rSU AT 5l sy cad9m Jiiol @05 1y g olasplas 31 oot S loysaS Sledlbl el ploliyls 1 (S aadS 39y sl 55

L (FI3)u8 59 3l sl wix alob @y as 55 Cass

250 105 aol BACK END oy > i JSuino L SU o

s puts i calg > a5 o3 Skl Ol 0> Guizg s glad
el o g8, 5

B 1O Ol | e | cmnl | olesbl systd | golamdl | 1:¥ - TR 30,810

e We live in a world dominated by software:
our lives depend on programs

e |s it possible to write bug-free software?

Reliable Software?
Tech.View: Cars and Software Bugs
May 16th 2010

“One thing computer programmers agree on is that there is no such thing

as a bug-free piece of software. Yes, you can write a five-line “hello world”
program and be reasonably confident it contains no errors. But any piece
of software that does a meaningful job will contain hundreds, or even
thousands, of undetected bugs."

]

“Microsoft, for instance, reckons to find 10-20 defects per 1,000 lines of
code during its in-house testing, and to whittle that down to 0.5 per 1,000
lines by the time the software is released to the public. Even so, a program
like Microsoft's venerable Windows XP - which had 40m lines of code-
would have contained at least 20,000 bugs when launched.”

Reliable Software?

The ART of
SO FTWA R E “Is it possible to test a program to find all of its

T E ST G errors? We will show you that the answer is
negative, even for trivial programs. In general, it is
impractical, often impossible, to find all the errors

'

in a program.”

Reliable Software?

Second Edition

“In short, we cannot achieve 100 percent
A confidence no matter how much time and energy

“ we put into it!”

Reliable Software?

“Software is released for use, not when it is known
to be correct, but when the rate of discovering new
errors slows down to one that management
considers acceptable.”

David Parnas

Pioneer of Software Engineering

10

Reliable Software?

e) | e s 5o
' ol b slyply 33 S 3525 W

bl wiis Byl loss 5 1o Jlojlu &) Blaze 513 slolayaly 31 (S il chnd 3 llas Lam! : slazdl sl

il s 3925 Slas Mol 5500 b oS Cal (53l0 L Lo 35,0 & bogs e b piSTy (503 .58 slowl 3L 5 slhog o

135250 1) 390 & 5 dhals panb |y Wl ol sl IS shazl 53

11

Are bugs a natural byproduct of software development that can't be avoided?

12

e Flight software for an Airbus A380 includes 120 million lines of code
(Simon Bradley, Airbus Group)

e How do we trust such a huge piece of software?

13

“Good afternoon passengers. This is your captain speaking.
We are currently experiencing a software bug in our flight systems.
Please return to your seats, keep your seat belts fastened and prepare for crash.”

14

“Since 2001, Airbus has been integrating several tool
supported formal verification techniques into the

development process of avionics software products”

Jean Souyris et al., “Formal Verification of Avionics Software Product”, FM 2009

15

(Formal) Software Verification is the act of proving/disproving
that a program is bug-free using mathematics

\ { ﬁ’
—

Testing and simulation can only Software verification checks all
check a few cases possible behaviors

16

~10%0
> 10190 g

— — no correctness
Check Finite

Portion

(Bounded Model Checking)

guarantee
+ short path to err

° °
° °
° °
° °
° o
° o
° o
° o
° o
° °

o ofo o o o ofo o o
o ofo o o o ofo o o
o ofo o o o ofo o o

o o
o o
o o
6 o
o o
o o
o o
o o
o o
o o

*{ Automated]

Check Finite
Abstraction

— incomplete

-+ correctness

guarantee

Software Verification (Predicate Abstraction)

(Infinite Space)

5o o° [0 o ©
56 © [0 5 ©

*{ Semi-Automated]

o oo o oflo oo o o
o oo o ofo oo o o
o oo o oflo oo o o
o oo o oflo oo o o
o oo o oflo oo o o
o oo o ofo oo o o
o oo o oo ofo o o
o oo o oflo oo o o

(Interactive Theorem Prover)

GCD Example

int x,y;

assume (x>0 A y>0);

while (x#y) {

if (x>y) then
X=X—Y;

else y=y—x; 17}

g W NN = O

19

GCD Example

int x,y;

assume (x>0 A y>0);

while (x#y) {

if (x>y) then
X=X—Y;

else y=y—x; }

g W NN = O

After loop (line 5):
x =y = largest positive integer that divides x and y

19

GCD Example

int x,y;

assume (x>0 A y>0);

while (x#y) {

if (x>y) then
X=X—Y;

else y=y—x; 17}

g W NN = O

assert (x# —1);

19

GCD Example

Control Flow Graph (CFG)

int x,y;

assume (x>0 A y>0);

while (x#y) {

if (x>y) then
X=X—Y;

else y=y—x; }

g W NN = O

assert (x# —1);

GCD Example

Control Flow Graph (CFG)

y infinite ﬁ

4 ° ° ° °
3) ° °) |:>
2 ° ° ° °
possible
1 ’t—0¢—0¢—0— /

path X

GCD Example

Invariant: A superset of reachable states of program
Prove Safety: Find suitable Invariant

y infinite ﬁ

Control Flow Graph (CFG)

4 ° ° ° °
3) ° °) |:>
2 ° ° ° °
possible
1 ’t—0¢—0¢—0— /

path X

GCD Example

Invariant: A superset of reachable states of program
Prove Safety: Find suitable Invariant

r>0ANy>0 Vv

19

GCD Example

Invariant: A superset of reachable states of program
Prove Safety: Find suitable Invariant

r>0ANy>0 Vv
x# —1 v

19

GCD Example

Invariant: A superset of reachable states of program
Prove Safety: Find suitable Invariant

r>0ANy>0 Vv
x# —1 v
y=>1 X

(not superset)

19

GCD Example

Invariant: A superset of reachable states of program
Prove Safety: Find suitable Invariant

r>0ANy>0 Vv
x# —1 v
y=>1

X

(not superset)

y >0 x

(superset, unsuitable for

safety proof) 19

GCD Example

Invariant: A superset of reachable states of program
Prove Safety: Find suitable Invariant

Challenge: Find program invariant

automatically & efficiently

19

Questions of Interest

Example questions in program analysis and verification

e Will the program crash?

e Does it compute the correct result?

Does it leak private information?

How long does it take to run?

How much power does it consume?

20

Model Checking

e Wide conceptual gap between the problem and the implementation
domains in complex software

e Model Driven Engineering (MDE):
use models to alleviate software complexity
e Model captures relevant aspects of system functionality
e In this course we are interested in formal models
e (based on automata, graph theory, logic)

e Model checking [Clarke/Emerson; Queille/Sifakis 1981]:
a technique to check if a property is valid in a model

21

Access to a Shared Resource

0

T

—1

<
Il
o

z <+ 0

(e
T

Access to a Shared Resource

x4+ 0

checks that no other process

accesses the resource

z <+ 0

Access to a Shared Resource

0

T

—1

<
Il
o

z <+ 0

(O
T

Access to a Shared Resource

0

T

—1

<
Il
o

z <+ 0

R0,
T

Access to a Shared Resource

0

T

—1

<
Il
o

z <+ 0

(e
T

Access to a Shared Resource

22

Access to a Shared Resource

x4+ 0

22

Access to a Shared Resource

x4+ 0

22

Access to a Shared Resource

22

[
O
S
S
o
[0}
]
x
e
]
S
T
<
v
®
o)
L)
w)
(02}
Q
O
3]
<<

(HEHEHE

_ i !

/ﬁ‘v > 8

=000
1

8]

22

[
O
S
S
o
[0}
]
x
e
]
S
T
<
v
®
o)
L)
w)
(02}
Q
O
3]
<<

2010202020
SOROE0

8]

22

Access to a Shared Resource

Safety Violation 2

-
o
€
<)}

fhas

-

<
O
=
o
(O]
(<)}
wn

22

-
o
€
<)}

fhas

-

<
O
=
o
(O]
(<)}
wn

22

-
o
€
<)}

fhas

-

<
O
=
o
(O]
(<)}
wn

22

-
o
€
<)}

fhas

-

<
O
=
o
(O]
(<)}
wn

22

-
o
€
<)}

fhas

-

<
O
=
o
(O]
(<)}
wn

22

Second Attempt

x4+ 0

| |
@ @

Deadlock

22

Third Attempt

22

The State Graph

23

The State Graph

Testing / Simulation: Explore one path at a time

|

23

The State Graph

Model Checking: Explore the whole graph (3 x 3 x 2 x 2 x 2 = 72 states)

|

23

Formal Methods

“Formal Methods” are mathematically rigorous techniques and tools for

specification, synthesis and verification of systems

Specification

—>

Program —

Input/Output
Specification

Y

Y

Verifier " x (co

2z g

Ly

Correct

Incorrect

unter-example)

Fail

Correct Program

Synthesizer

E—

>

Fail

2z,

& -

Recent Success Stories in Industry

F [ification | TLA+ and model checkin
amazon ormal specification language an ing

webservices® Solve difficult design problems in critical systems
(Chris Newcombe et al. 2015)

Infer static analyzer to verify every code modification
f |‘ in Facebook’s mobile apps

Code Infer (http://fbinfer.com/)

@ AIRBUS Astrée static analyzer to check

flight control program for the A380 series
(http://www.astree.ens.fr/)

[| . SLAM static verifier for debugging device drivers
[| MlcrOSOft Based on predication abstraction and CEGAR

(http://research.microsoft.com/en-us/projects/slam/)
25

http://fbinfer.com/
http://www.astree.ens.fr/
http://research.microsoft.com/en-us/projects/slam/

Tools

Z3 SMT solver
https://github.com/Z3Prover/z3 zg

The Coq Proof Assistant
https://coqg.inria.fr/

SPIN Model Checker Spin \
http://spinroot.com/

26

https://github.com/Z3Prover/z3
https://coq.inria.fr/
http://spinroot.com/

e 50% 6 homework assignments (each ~ 8%)

e 50% final examination

e Assignments must be completed individually

- Unless the assignment explicitly says that collaboration is possible

e Workload depends on planning well: ~ Start early!

27

e Materials for reading will be posted with lecture notes
Suggested Book

e “Principles of Model Checking”
Christel Baier and Joost-Pieter Katoen

e Covers some of the course material

28

Course Staff

e Instructor: Hossein Hojjat (https://www.cs.rit.edu/~hh/)

- University of Tehran
(Bs. Software Engineering 2001 - 2005)
- University of Tehran & TU Eindhoven
(Msc. Software Engineering 2005 - 2007)
- EPFL Lausanne, Switzerland
(PhD Computer Science 2008 - 2013)
Cornell University
(Postdoctoral Researcher 2014 - 2016)
Rochester Institute of Technology
(Tenure Track Assistant Professor 2016 - 2018)

e Email: hojjat@cornell.edu
e Office: 615

29

https://www.cs.rit.edu/~hh/

Icebreaker

Tell us about your background,
how do you (usually) ensure that your programs are correct,
story of a nasty bug that took you a while to debug! (if any)

30

Why functional programming?

31

Parallelism

e Moore's law:
Transistors of CPU doubles approximately every two years

e No longer true: Number of cores has been increasing recently

GPU programs can spawn millions of threads during execution

e Software has to take advantage of all the additional processors

e Programmers use sequential algorithms
32

Concurrent Programming

Models
e Shared Memory with locking

(mutex, semaphore,...)

e Message Passing

(Actor model)

e Software transactional memory

33

Concurrent Programming

Models
e Shared Memory with locking

(mutex, semaphore,...)

e Message Passing

(Actor model)

e Software transactional memory

class Person (val name:String,
val age: 1Int)
class actor extends Actor {
def receive = {
case people: Set[Person] =>

val (minors, adults) =

people partition (_.age < 18)
Facebook ! minors
LinkedIn ! adults

}

33

Concurrent Programming

class Person (val name:String,

val age: 1Int)

Models i i class actor extends Actor {
e Shared Memory with locking

def receive = {

(mutex, semaphore,...) case people: Set[Person] =>

° Message Passing val (minors, adults) =

(Actor model) people partiij,ion (_.age < 18)
. Facebook ! minors

e Software transactional memory Linkedn | adults

}
}

e None of the concurrent models is the ultimate solution
e Fundamental problem: Non-determinism

e Heisenbug: Bug that seems to disappear when attempting to study it

33

Non-determinism

var x = 0;
thread {
e Non-determinism: concurrent threads x = 1;
are accessing shared mutable state T =x L
e We can encapsulate state in actors or thread {
transactions, but the fundamental x = x * 2;
problem is the same '

value of x finally: 2,3,4

(assignments are atomic)

non-determinism = parallel processing + mutable state

34

Functional Programming

e To get deterministic processing, avoid the mutable state
e Avoid mutable state means programming functionally

e Rebirth of interest in functional programming triggered by multi-core
hardware

35

Functional Programming

e To get deterministic processing, avoid the mutable state
e Avoid mutable state means programming functionally

e Rebirth of interest in functional programming triggered by multi-core
hardware

e No mutable state: variables are immutable
e No assignment statement
e Functions are first-class values

e Functional program: collection of mathematical functions

35

