
Introduction to Formal Methods

Lecture 1

Course Overview

Hossein Hojjat & Fatemeh Ghassemi

September 23, 2018



Course Goals

What is this course about?

1



Year Project Lines of code

∼1960s Apollo 11 mission 145K

[John D. Cressler 2016]

∼1970s
Safeguard Program

2M

(US Army anti-ballistic missile system) [John Lamb 1985]

∼1980s
IBM air tra�c

2M

control systems [Computerworld 1988]

∼1990s Seawolf Submarine 3.6M

[Kevin Kelly 1995]

∼1990s Boeing 777 4M

[Ron J.Pehrson 1996] 2



Android

∼ 12M LOC

[Geo� Varrall 2012]

Philips Healthcare MRI scanner

∼ 10M LOC

[Pierre Van de Laar, Teade Punter 2011]

Ford GT

∼ 10M LOC

[Jamal Hameedi 2015]

Pacemaker Device

∼ 100K LOC

[Dev Raheja 2015]

3

Appolo 11 Safeguard Tra�c Control Seawolf Submarine Boeing 777

145K LOC 2M LOC 2M LOC 3.6M LOC 4M LOC



Android

∼ 12M LOC

[Geo� Varrall 2012]

Philips Healthcare MRI scanner

∼ 10M LOC

[Pierre Van de Laar, Teade Punter 2011]

Ford GT

∼ 10M LOC

[Jamal Hameedi 2015]

Pacemaker Device

∼ 100K LOC

[Dev Raheja 2015]

3

Appolo 11 Safeguard Tra�c Control Seawolf Submarine Boeing 777

145K LOC 2M LOC 2M LOC 3.6M LOC 4M LOC



News Headlines

4



News Headlines

5



Question

• We live in a world dominated by software:

our lives depend on programs

• Is it possible to write bug-free software?

6



Reliable Software?

Tech.View: Cars and Software Bugs

May 16th 2010

�One thing computer programmers agree on is that there is no such thing

as a bug-free piece of software. Yes, you can write a �ve-line �hello world�

program and be reasonably con�dent it contains no errors. But any piece

of software that does a meaningful job will contain hundreds, or even

thousands, of undetected bugs.�

[...]

�Microsoft, for instance, reckons to �nd 10-20 defects per 1,000 lines of

code during its in-house testing, and to whittle that down to 0.5 per 1,000

lines by the time the software is released to the public. Even so, a program

like Microsoft's venerable Windows XP - which had 40m lines of code-

would have contained at least 20,000 bugs when launched.�

7



Reliable Software?

�Is it possible to test a program to �nd all of its

errors? We will show you that the answer is

negative, even for trivial programs. In general, it is

impractical, often impossible, to �nd all the errors

in a program.�

8



Reliable Software?

�In short, we cannot achieve 100 percent

con�dence no matter how much time and energy

we put into it!�

9



Reliable Software?

David Parnas

Pioneer of Software Engineering

�Software is released for use, not when it is known

to be correct, but when the rate of discovering new

errors slows down to one that management

considers acceptable.�

10



Reliable Software?

11



Are bugs a natural byproduct of software development that can't be avoided?

12



• Flight software for an Airbus A380 includes 120 million lines of code

(Simon Bradley, Airbus Group)

• How do we trust such a huge piece of software?

13



�Good afternoon passengers. This is your captain speaking.

We are currently experiencing a software bug in our �ight systems.

Please return to your seats, keep your seat belts fastened and prepare for crash.�

14



�Since 2001, Airbus has been integrating several tool

supported formal veri�cation techniques into the

development process of avionics software products�

Jean Souyris et al., �Formal Veri�cation of Avionics Software Product�, FM 2009

15



(Formal) Software Veri�cation is the act of proving/disproving
that a program is bug-free using mathematics

Testing and simulation can only

check a few cases
Software veri�cation checks all

possible behaviors

16



• Number of atoms in the observable universe ≈ 1080

• Number of states in a program with 10 integer vars (64-bit) > 10190

• State space of software is so enormously large that is usually treated as in�nite

17



Software Veri�cation

(In�nite Space)

Automated

Semi-Automated

(Interactive Theorem Prover)

Check Finite

Portion

(Bounded Model Checking)


− no correctness

guarantee

+ short path to err

Check Finite

Abstraction


− incomplete

+ correctness

guarantee

(Predicate Abstraction)

18



GCD Example

int x,y;
0: assume (x≥0 ∧ y≥0);
1: while (x 6=y) {
2: if (x>y) then
3: x=x−y;
4: else y=y−x; }
5:

19



GCD Example

int x,y;
0: assume (x≥0 ∧ y≥0);
1: while (x 6=y) {
2: if (x>y) then
3: x=x−y;
4: else y=y−x; }
5:

After loop (line 5):

x = y = largest positive integer that divides x and y

19



GCD Example

int x,y;
0: assume (x≥0 ∧ y≥0);
1: while (x 6=y) {
2: if (x>y) then
3: x=x−y;
4: else y=y−x; }
5: assert (x6= −1);

19



GCD Example

int x,y;
0: assume (x≥0 ∧ y≥0);
1: while (x 6=y) {
2: if (x>y) then
3: x=x−y;
4: else y=y−x; }
5: assert (x6= −1);

Control Flow Graph (CFG)

q0

q1

x ≥ 0 ∧ y ≥ 0

q2

q3 q4

x 6= y

x > y x ≤ y

q5
x = y

x = −1

x ′ = x − y y ′ = y − x

errerr

19



GCD Example

1 2 3 40−1

1

2

3

4

infinite

possible

error
path

y

x

Control Flow Graph (CFG)

q0

q1

x ≥ 0 ∧ y ≥ 0

q2

q3 q4

x 6= y

x > y x ≤ y

q5
x = y

x = −1

x ′ = x − y y ′ = y − x

errerr

19



GCD Example

1 2 3 40−1

1

2

3

4

infinite

possible

error
path

y

x

Control Flow Graph (CFG)

q0

q1

x ≥ 0 ∧ y ≥ 0

q2

q3 q4

x 6= y

x > y x ≤ y

q5
x = y

x = −1

x ′ = x − y y ′ = y − x

errerr

19

Invariant: A superset of reachable states of program
Prove Safety: Find suitable Invariant



GCD Example

1 2 3 40−1

1

2

3

4

error

y

x

x ≥ 0 ∧ y ≥ 0 X

(not superset)

(superset, unsuitable for

safety proof)

19

Invariant: A superset of reachable states of program
Prove Safety: Find suitable Invariant



GCD Example

1 2 3 40−1

1

2

3

4

error

y

x

x ≥ 0 ∧ y ≥ 0 X

x 6= −1 X

(not superset)

(superset, unsuitable for

safety proof)

19

Invariant: A superset of reachable states of program
Prove Safety: Find suitable Invariant



GCD Example

1 2 3 40−1

1

2

3

4

error

y

x

x ≥ 0 ∧ y ≥ 0 X

x 6= −1 X

y ≥ 1 ×
(not superset)

(superset, unsuitable for

safety proof)

19

Invariant: A superset of reachable states of program
Prove Safety: Find suitable Invariant



GCD Example

1 2 3 40−1

1

2

3

4

error

y

x

x ≥ 0 ∧ y ≥ 0 X

x 6= −1 X

y ≥ 1 ×
(not superset)

y ≥ 0 ×
(superset, unsuitable for

safety proof) 19

Invariant: A superset of reachable states of program
Prove Safety: Find suitable Invariant



GCD Example

19

Invariant: A superset of reachable states of program
Prove Safety: Find suitable Invariant

Challenge: Find program invariant

automatically & e�ciently



Questions of Interest

Example questions in program analysis and veri�cation

• Will the program crash?

• Does it compute the correct result?

• Does it leak private information?

• How long does it take to run?

• How much power does it consume?

20



Model Checking

• Wide conceptual gap between the problem and the implementation

domains in complex software

• Model Driven Engineering (MDE):

use models to alleviate software complexity

• Model captures relevant aspects of system functionality

• In this course we are interested in formal models

• (based on automata, graph theory, logic)

• Model checking [Clarke/Emerson; Queille/Sifakis 1981]:

a technique to check if a property is valid in a model

21



Access to a Shared Resource

noacc

x← 0

req

acc

y = 0

x← 1

x← 0

checks that no other process

accesses the resource

nn00

ar10

aa11

Safety Violation

Deadlock

noacc

y ← 0

req

acc

y ← 0

22



Access to a Shared Resource

noacc

x← 0

req

acc

y = 0

x← 1

x← 0

checks that no other process

accesses the resource

nn00

ar10

aa11

Safety Violation

Deadlock

noacc

y ← 0

req

acc

y ← 0

22



Access to a Shared Resource

noacc

x← 0

req

acc

y = 0

x← 1

x← 0

checks that no other process

accesses the resource

nn00

ar10

aa11

Safety Violation

Deadlock

noacc

y ← 0

req

acc

y ← 0

22



Access to a Shared Resource

noacc

x← 0

req

acc

y = 0

x← 1

x← 0

checks that no other process

accesses the resource

nn00

ar10

aa11

Safety Violation

Deadlock

noacc

y ← 0

req

acc

y ← 0

22



Access to a Shared Resource

noacc

x← 0

req

acc

y = 0

x← 1

x← 0

checks that no other process

accesses the resource

nn00

ar10

aa11

Safety Violation

Deadlock

noacc

y ← 0

req

acc

y ← 0

22



Access to a Shared Resource

noacc

x← 0

req

acc

y = 0

x← 1

x← 0

checks that no other process

accesses the resource

nn00

ar10

aa11

Safety Violation

Deadlock

noacc

y ← 0

req

acc

x = 0

y ← 1

y ← 0

22



Access to a Shared Resource

noacc

x← 0

req

acc

y = 0

x← 1

x← 0

checks that no other process

accesses the resource

nn00

ar10

aa11

Safety Violation

Deadlock

noacc

y ← 0

req

acc

x = 0

y ← 1

y ← 0

22



Access to a Shared Resource

noacc

x← 0

req

acc

y = 0

x← 1

x← 0

checks that no other process

accesses the resource

nn00

rn00

rr00

ar10

aa11

Safety Violation

Deadlock

noacc

y ← 0

req

acc

x = 0

y ← 1

y ← 0

22



Access to a Shared Resource

noacc

x← 0

req

acc

y = 0

x← 1

x← 0

checks that no other process

accesses the resource

nn00

rn00

rr00

ar10

aa11

Safety Violation

Deadlock

noacc

y ← 0

req

acc

x = 0

y ← 1

y ← 0

22



Access to a Shared Resource

noacc

x← 0

req

acc

y = 0

x← 1

x← 0

checks that no other process

accesses the resource

nn00

rn00

rr00

ar10

aa11

Safety Violation

Deadlock

noacc

y ← 0

req

acc

x = 0

y ← 1

y ← 0

22



Access to a Shared Resource

noacc

x← 0

req

acc

y = 0

x← 1

x← 0

checks that no other process

accesses the resource

nn00

rn00

rr00

ar10

aa11

Safety Violation

Deadlock

noacc

y ← 0

req

acc

x = 0

y ← 1

y ← 0

22



Access to a Shared Resource

noacc

x← 0

req

acc

y = 0

x← 1

x← 0

checks that no other process

accesses the resource

nn00

rn00

rr00

ar10

aa11

Safety Violation

Deadlock

noacc

y ← 0

req

acc

x = 0

y ← 1

y ← 0

22



Second Attempt

noacc

x← 0

req

acc

x← 1

y = 0

x← 0

checks that no other process

accesses the resource

nn00

ar10

aa11

Safety Violation

Deadlock

noacc

y ← 0

req

acc

y ← 0

22



Second Attempt

noacc

x← 0

req

acc

x← 1

y = 0

x← 0

checks that no other process

accesses the resource

nn00

ar10

aa11

Safety Violation

Deadlock

noacc

y ← 0

req

acc

y ← 1

x = 0

y ← 0

22



Second Attempt

noacc

x← 0

req

acc

x← 1

y = 0

x← 0

checks that no other process

accesses the resource

nn00

ar10

aa11

Safety Violation

Deadlock

noacc

y ← 0

req

acc

y ← 1

x = 0

y ← 0

22



Second Attempt

noacc

x← 0

req

acc

x← 1

y = 0

x← 0

checks that no other process

accesses the resource

nn00

rn10

ar10

aa11

Safety Violation

Deadlock

noacc

y ← 0

req

acc

y ← 1

x = 0

y ← 0

22



Second Attempt

noacc

x← 0

req

acc

x← 1

y = 0

x← 0

checks that no other process

accesses the resource

nn00

rn10

rr11

ar10

aa11

Safety Violation

Deadlock

noacc

y ← 0

req

acc

y ← 1

x = 0

y ← 0

22



Second Attempt

noacc

x← 0

req

acc

x← 1

y = 0

x← 0

checks that no other process

accesses the resource

nn00

rn10

rr11

ar10

aa11

Safety Violation

Deadlock

noacc

y ← 0

req

acc

y ← 1

x = 0

y ← 0

22



Third Attempt

noacc

x← 0

req

acc

x← 1;z ← 0

y = 0 or z = 1

x← 0

checks that no other process

accesses the resource

nn00

ar10

aa11

Safety Violation

Deadlock

noacc

y ← 0

req

acc

y ← 1;z ← 1

x = 0 or z = 0

y ← 0

22



The State Graph

Testing / Simulation: Explore one path at a timeModel Checking: Explore the whole graph (3× 3× 2× 2× 2 = 72 states)

nn001

rn101 nr012

an101 rr112

ar112

23



The State Graph

Testing / Simulation: Explore one path at a time

Model Checking: Explore the whole graph (3× 3× 2× 2× 2 = 72 states)

nn001

rn101 nr012

an101 rr112

ar112

23



The State Graph

Testing / Simulation: Explore one path at a time

Model Checking: Explore the whole graph (3× 3× 2× 2× 2 = 72 states)

nn001

rn101 nr012

an101 rr112

ar112

23



Formal Methods

�Formal Methods� are mathematically rigorous techniques and tools for

speci�cation, synthesis and veri�cation of systems

Verifier
Program

Specification
Correct

Incorrect

Fail

(counter-example)

Correct

Incorrect
(counter-example)

ψ

SynthesizerSpecification

Correct Program

Input/Output

Fail
ψ

24



Recent Success Stories in Industry

Formal speci�cation language TLA+ and model checking

Solve di�cult design problems in critical systems
(Chris Newcombe et al. 2015)

Infer static analyzer to verify every code modi�cation

in Facebook's mobile apps

(http://fbinfer.com/)

Astrée static analyzer to check

�ight control program for the A380 series
(http://www.astree.ens.fr/)

SLAM static veri�er for debugging device drivers

Based on predication abstraction and CEGAR
(http://research.microsoft.com/en-us/projects/slam/)

25

http://fbinfer.com/
http://www.astree.ens.fr/
http://research.microsoft.com/en-us/projects/slam/


Tools

Z3 SMT solver

https://github.com/Z3Prover/z3

The Coq Proof Assistant

https://coq.inria.fr/

SPIN Model Checker

http://spinroot.com/

26

https://github.com/Z3Prover/z3
https://coq.inria.fr/
http://spinroot.com/


Course Work

• 50% 6 homework assignments (each ∼ 8%)

• 50% �nal examination

• Assignments must be completed individually

- Unless the assignment explicitly says that collaboration is possible

• Workload depends on planning well: Start early!

27



Textbook

• Materials for reading will be posted with lecture notes

Suggested Book

• �Principles of Model Checking�

Christel Baier and Joost-Pieter Katoen

• Covers some of the course material

28



Course Sta�

• Instructor: Hossein Hojjat (https://www.cs.rit.edu/~hh/)

- University of Tehran

(Bs. Software Engineering 2001 - 2005)

- University of Tehran & TU Eindhoven

(Msc. Software Engineering 2005 - 2007)

- EPFL Lausanne, Switzerland

(PhD Computer Science 2008 - 2013)

- Cornell University

(Postdoctoral Researcher 2014 - 2016)

- Rochester Institute of Technology

(Tenure Track Assistant Professor 2016 - 2018)

• Email: hojjat@cornell.edu

• O�ce: 615

29

https://www.cs.rit.edu/~hh/


Icebreaker

Tell us about your background,

how do you (usually) ensure that your programs are correct,

story of a nasty bug that took you a while to debug! (if any)

30



Why functional programming?

31



Parallelism

• Moore's law:

Transistors of CPU doubles approximately every two years

• No longer true: Number of cores has been increasing recently

GPU programs can spawn millions of threads during execution

• Software has to take advantage of all the additional processors

• Programmers use sequential algorithms
32



Concurrent Programming

Models
• Shared Memory with locking

(mutex, semaphore,...)

• Message Passing

(Actor model)

• Software transactional memory

class Person(val name:String,

val age: Int)

class actor extends Actor {

def receive = {

case people: Set[Person] =>

val (minors, adults) =

people partition (_.age < 18)

Facebook ! minors

LinkedIn ! adults

}

}

• None of the concurrent models is the ultimate solution

• Fundamental problem: Non-determinism

• Heisenbug: Bug that seems to disappear when attempting to study it

33



Concurrent Programming

Models
• Shared Memory with locking

(mutex, semaphore,...)

• Message Passing

(Actor model)

• Software transactional memory

class Person(val name:String,

val age: Int)

class actor extends Actor {

def receive = {

case people: Set[Person] =>

val (minors, adults) =

people partition (_.age < 18)

Facebook ! minors

LinkedIn ! adults

}

}

• None of the concurrent models is the ultimate solution

• Fundamental problem: Non-determinism

• Heisenbug: Bug that seems to disappear when attempting to study it

33



Concurrent Programming

Models
• Shared Memory with locking

(mutex, semaphore,...)

• Message Passing

(Actor model)

• Software transactional memory

class Person(val name:String,

val age: Int)

class actor extends Actor {

def receive = {

case people: Set[Person] =>

val (minors, adults) =

people partition (_.age < 18)

Facebook ! minors

LinkedIn ! adults

}

}

• None of the concurrent models is the ultimate solution

• Fundamental problem: Non-determinism

• Heisenbug: Bug that seems to disappear when attempting to study it

33



Non-determinism

• Non-determinism: concurrent threads

are accessing shared mutable state

• We can encapsulate state in actors or

transactions, but the fundamental

problem is the same

var x = 0;

thread {

x = 1;

x = x + 1;

}

thread {

x = x * 2;

}

value of x �nally: 2, 3, 4

(assignments are atomic)

non-determinism = parallel processing + mutable state

34



Functional Programming

• To get deterministic processing, avoid the mutable state

• Avoid mutable state means programming functionally

• Rebirth of interest in functional programming triggered by multi-core

hardware

• No mutable state: variables are immutable

• No assignment statement

• Functions are �rst-class values

• Functional program: collection of mathematical functions

35



Functional Programming

• To get deterministic processing, avoid the mutable state

• Avoid mutable state means programming functionally

• Rebirth of interest in functional programming triggered by multi-core

hardware

• No mutable state: variables are immutable

• No assignment statement

• Functions are �rst-class values

• Functional program: collection of mathematical functions

35


