

Introduction to Formal Methods

Lecture 10

Verifying Programs with Arrays & Dynamic Allocation

Hossein Hojjat & Fatemeh Ghassemi

October 23, 2018

Weakest Precondition Rules: Summary

c	wp(c,Q)
x := e	$Q[x \mapsto e]$
assume(b)	b o Q
assert(b)	$wp(b \wedge Q)$
havoc(x)	$\forall y. Q[x \mapsto y]$
$c_1; c_2$	$wp(c_1,wp(c_2,Q))$
if b then c_1 else c_2	$b o wp(c_1,Q) \wedge \neg b o wp(c_2,Q)$
while b do c	$I \wedge \forall \vec{y}. \Big((I \wedge b \to wp(c,I)) \wedge (I \wedge \neg b \to Q) \Big) [\vec{x} \mapsto \vec{y}]$ (\vec{x} are variables modified in c and I is the loop invariant)

```
a[k]=1;
a[j]=2;
x=a[k]+a[j];
{x=3}
a[k]=1;
a[j]=2;
a[j]=2;
x=a[k]+a[j]=3}
x=a[k]+a[j];
{x=3}
```

• Now what? Can we use the standard rule for assignment?

$$\operatorname{wp}(x:=e,C)=C[x\mapsto e]$$

```
a[k]=1;
a[j]=2;
x=a[k]+a[j];
{x=3}
a[k]=1;
a[j]=2;
a[j]=2;
x=a[k]+a[j]=3}
x=a[k]+a[j];
{x=3}
```

• Now what? Can we use the standard rule for assignment?

$$wp(x := e, C) = C[x \mapsto e]$$

```
a[k]=1;
                                                   \{1+2=3\} = \{true\}
a[k]=1;
                        a[i]=2;
                                                   a[k]=1;
a[j]=2;
                       {a[k]+a[j]=3}
                                                 \{a[k]+2=3\}
x=a[k]+a[j];
                        x=a[k]+a[j];
                                                   a[j]=2;
\{x=3\}
                        \{x=3\}
                                                   {a[k]+a[j]=3}
                                                   x=a[k]+a[j];
                                                   \{x=3\}
```

• Now what? Can we use the standard rule for assignment?

$$wp(x := e, C) = C[x \mapsto e]$$

```
a[k]=1;
                                                   \{1+2=3\} = \{true\}
a[k]=1;
                        a[i]=2;
                                                   a[k]=1;
a[j]=2;
                       {a[k]+a[j]=3}
                                                 \{a[k]+2=3\}
x=a[k]+a[j];
                        x=a[k]+a[j];
                                                   a[j]=2;
\{x=3\}
                        \{x=3\}
                                                   {a[k]+a[j]=3}
                                                   x=a[k]+a[j];
                                                   \{x=3\}
```

What if k = j?

2

• Now what? Can we use the standard rule for assignment?

$$\operatorname{wp}(x:=e,C)=C[x\mapsto e]$$

```
 a[k]=1; & a[k]=1; & \{1+2=3\} = \{true\} \\ a[j]=2; & a[j]=2; & a[k]=1; \\ x=a[k]+a[j]; & \{a[k]+a[j]=3\} & \{a[k]+a[j]; \\ \{x=3\} & \{x=3\} & \{a[k]+a[j]; \\ \{x=3\} & \{a[k]+a[k], \\ \{x=3\} &
```

What if k = j?

Naïve array assignment axiom does not work

$$\{Q[A[e_1] \mapsto e_2]\}\ A[e_1] := e_2\ \{Q\}$$

- \bullet Changes to A[i] may also change $A[j],\,A[k],\,\dots$
 - (since i might equal j, k, ...)
- **Solution**: enrich the assertion language with expressions $A\{e_1\mapsto e_2\}$
- ullet Meaning: the array equal to A except that index e_1 maps to value e_2

$$A\{e_1 \mapsto e_2\}[i] = \begin{cases} A[i] & \text{if } i \neq e_1 \\ e_2 & \text{if } i = e_1 \end{cases}$$

3

Assignment Rule with Theory of Arrays

$$\vdash \ \{Q[A \mapsto A\{i \mapsto e\}]\} \ A[i] := e \ \{Q\}$$

```
a[k]=1;
a[j]=2;
{a[k]+a[j]=3}
x=a[k]+a[j];
{x=3}
```



```
\{k \neq j\}

\{a\{k\mapsto 1\}\{j\mapsto 2\}[k] + a\{k\mapsto 1\}\{j\mapsto 2\}[j] = 3\}

a[k] = 1;

\{a\{j\mapsto 2\}[k] + a\{j\mapsto 2\}[j] = 3\}

a[j] = 2;

\{a[k] + a[j] = 3\}

x = a[k] + a[j];

\{x = 3\}
```

Prove the array sum is correct

```
{n\geq0}

j = 0;

s = 0;

while (j<n) do{

s = s + a[j];

j = j + 1;

}

{ s = \sum_{0 \leq i < n} a[i] }
```

$$\frac{A \to I \qquad \vdash \{b \land I\} \ c \ \{I\} \qquad I \land \neg b \to B}{\vdash \ \{A\} \ \text{while} \ b \ \text{do} \ c \ \{B\}}$$

Prove the array sum is correct

```
{n\geq0}

j = 0;

s = 0;

while (j<n) do{

s = s + a[j];

j = j + 1;

}

{ s = \sum_{0 \leq i < n} a[i] }
```

$$\frac{A \to I \qquad \vdash \{b \land I\} \ c \ \{I\} \qquad I \land \neg b \to B}{\vdash \ \{A\} \ \text{while} \ b \ \text{do} \ c \ \{B\}}$$

Choose invariant $(s = \sum_{0 \le i < j} a[i]) \land 0 \le j \le n$ **Step 1.** Prove invariant is maintained throughout the loop

$$\begin{aligned} \{j < n \land (s = \sum_{0 \leq i < j} a[i]) \land 0 \leq j \leq n \} \\ \mathbf{s} &= \mathbf{s} + \mathbf{a}[\mathbf{j}]; \quad \mathbf{j} = \mathbf{j} + 1 \\ \{(s = \sum_{0 \leq i < j} a[i]) \land 0 \leq j \leq n \} \end{aligned}$$

Prove the array sum is correct

$$\frac{A \to I \qquad \vdash \{b \land I\} \ c \ \{I\} \qquad I \land \neg b \to B}{\vdash \ \{A\} \ \text{while} \ b \ \text{do} \ c \ \{B\}}$$

Choose invariant $(s = \sum_{0 \le i < j} a[i]) \land 0 \le j \le n$ **Step 2.** Prove invariant is initially *true*

$$\{n \geq 0\}$$

$$\label{eq:constraints} \mathbf{j} = \mathbf{0} \text{; s = 0}$$

$$\{(s = \sum_{0 \leq i < j} a[i]) \land 0 \leq j \leq n\}$$

Prove the array sum is correct

```
{n\geq0}

j = 0;

s = 0;

while (j<n) do{

s = s + a[j];

j = j + 1;

}

{ s = \sum_{0 \leq i < n} a[i] }
```

$$\frac{A \to I \qquad \vdash \{b \land I\} \ c \ \{I\} \qquad I \land \neg b \to B}{\vdash \ \{A\} \text{ while } b \text{ do } c \ \{B\}}$$

Choose invariant $(s=\sum_{0\leq i< j}a[i])\land 0\leq j\leq n$ Step 3. Prove invariant and exit condition implies postcondition

$$\left(\left(s = \sum_{0 \le i < j} a[i] \right) \land 0 \le j \le n \land j \ge n \right) \to$$

$$s = \sum_{0 \le i < n} a[i]$$

Proof Obligations

Step 1. Prove invariant is maintained throughout the loop

$$\{(s+a[j] = \sum_{0 \leq i < j+1} a[i]) \land 0 \leq j+1 \leq n\}$$
 (by assignment rule)
$$s = s + a[j]$$

$$\{(s = \sum_{0 \leq i < j+1} a[i]) \land 0 \leq j+1 \leq n\}$$
 (by assignment rule)
$$j = j+1$$

$$\{(s = \sum_{0 \leq i < j} a[i]) \land 0 \leq j \leq n\}$$

Need to show:

$$\begin{array}{l} (0 \leq j \leq n \land (s = \sum_{0 \leq i < j} a[i]) \land j < n) \rightarrow \\ (0 \leq j + 1 \leq n \land (s + a[j] = \sum_{0 \leq i < j + 1} a[i])) \end{array}$$

Proof Obligations

Step 2. Prove invariant is initially *true*

$$\{(0=\sum_{0\leq i<0}a[i])\wedge 0\leq 0\leq n\} \qquad \text{(by assignment rule)}$$

$$j=0$$

$$\{(0=\sum_{0\leq i< j}a[i])\wedge 0\leq j\leq n\} \qquad \text{(by assignment rule)}$$

$$s=0$$

$$\{(s=\sum_{0\leq i< j}a[i])\wedge 0\leq j\leq n\}$$

Need to show:

$$(n \geq 0) \rightarrow (0 = \sum_{0 \leq i < 0} a[i]) \land 0 \leq 0 \leq n$$

7

Proof Obligations

Step 3. Prove invariant and exit condition implies postcondition

$$\begin{array}{c} ((s = \sum_{0 \leq i < j} a[i]) \land 0 \leq j \leq n \land j \geq n) \rightarrow \\ (s = \sum_{0 \leq i < n} a[i]) \end{array}$$

Consider the following program:

```
{0\leqi<n}

j = i+1;

while (j<n) {

a[i] = \max(a[i], a[j]);

j = j+1;

}

{ \forall_{i \leq k < n} \ a_0[k] \leq a[i] }
```

Is the following a loop invariant?

$$\{ \forall_{i \le k < j} \ a_0[k] \le a[i] \land 0 \le j \le n \}$$

 $(a_0 \text{ is the initial array})$

Invariant Proof

Prove invariant is maintained throughout the loop

$$\{\forall_{i \leq k < j+1} \ a_0[k] \leq \max(a[i], a[j]) \land 0 \leq j+1 \leq n \}$$

$$\{\forall_{i \leq k < j+1} \ a_0[k] \leq a\{i \mapsto \max(a[i], a[j])\}[i] \land 0 \leq j+1 \leq n \}$$
 (by array assignment)
$$a[i] = \max(a[i], a[j])$$

$$\{\forall_{i \leq k < j+1} \ a_0[k] \leq a[i] \land 0 \leq j+1 \leq n \}$$
 (by assignment)
$$j = j+1$$

$$\{\forall_{i \leq k < j} \ a_0[k] \leq a[i] \land 0 \leq j \leq n \}$$

Need to show:

$$(\forall_{i \le k < j} \ a_0[k] \le a[i] \land j < n) \rightarrow$$

$$(\forall_{i \le k < j+1} \ a_0[k] \le \max(a[i], a[j]) \land 0 \le j+1 \le n)$$

We don't know that $a_0[j] \leq \max(a[i], a[j])$! Conjoin a new constraint $(\forall_{j \leq k < n} \ a[k] = a_0[k]) \land i < j$

Array Bounds

• Check if an array index is within the bounds of the array

$$x := a[i]$$

```
\begin{array}{l} {\tt assert} \, (0 \leq i \wedge i < \, \, {\tt size(a)}) \\ {\tt x} \ := \, {\tt a[i]} \end{array}
```

$$a[i] := x$$

```
\begin{array}{l} \mathtt{assert} \, (0 \leq i \wedge i < \, \mathtt{size} \, (\mathtt{a})) \\ \mathtt{a} \ := \ \mathtt{a} \, [\mathtt{i} {\mapsto} \mathtt{x}] \end{array}
```

Linked List Example

How to verify such code?

Linked List Example

```
insert(first,n):
                                                                     if (first == null)
              first
                                                                         first = n;
                        next
                                       next
                                                      next
                                                                     else {
                                                O_3
                                                              O_4
                                                                         n.next = first;
                                       prev
                                                      prev
                        prev
                                                                         first.prev = n;
            next = \{(o_1, o_2), (o_2, o_3), (o_3, o_4)\}\
                                                                         first = n;
                                                                     }
            prev = \{(o_2, o_1), (o_3, o_2), (o_4, o_3)\}\
                                                                     Change of relations
first
                                                                     (partial functions):
                                       next
                         next
                                                      next
          next
                                 o_2
                                                              O_{\Delta}
                                                03
                                                                     \operatorname{next}' = \operatorname{next} \cup \{(n, o_1)\}
          prev
                                       prev
                                                      prev
                         prev
                                                                     \operatorname{prev}' = \operatorname{prev} \cup \{(o_1, n)\}
       next = \{(o_1, o_2), (o_2, o_3), (o_3, o_4), (n, o_1)\}
                                                                     using assignments:
       prev = \{(o_2, o_1), (o_3, o_2), (o_4, o_3), (o_1, n)\}
                                                                     next = next[n \mapsto first]
                                                                                                     12
                                                                     prev = prev[first \mapsto n]
```

Reading Fields

Statement

Computes the value of y simply as

$$y = next(x)$$

• We should not de-reference null

```
assert(x \neq null);
y = next(x)
```

- We assume that the type system ensures that if x is not null then the value next (x) is defined
- Otherwise, we could add the corresponding check

```
assert(x \in dom(next));
y = next(x)
```

Writing Fields

- We represent each field using a global partial function
- Statement

$$x.next = y$$

• Changes heap according to this update:

$$next' = next[x \mapsto y]$$

• which is a notation that expands to:

$$\mathsf{next'} = \{(u, v) | (u = x \land v = y) \lor (u \neq x \land (u, v) \in \mathsf{next}) \}$$

We should not assign fields of null so we also add this check

assert(
$$x \neq null$$
);
next' = next[$x \mapsto y$]

Why we Need Functions?

- \bullet Say we have x.f and y.f in the program
- Why not replace them simply with fresh variables x_f and y_f ?
- Does this assertion hold for two distinct values p, q?

```
var xf = ...
var yf = ...
xf = p
yf = q
assert(xf == p)
```

• Yes. The value of xf is still p

Why we Need Functions?

- Say we have x.f and y.f in the program
- Why not replace them simply with fresh variables x_f and y_f ?
- Does this assertion hold for two distinct values p, q?

```
var xf = ...
var yf = ...
xf = p
yf = q
assert(xf == p)
```

- Yes. The value of xf is still p
- Does this assertion hold?

```
x.f = p
y.f = q
assert(x.f == p)
```

Why we Need Functions?

- Say we have x.f and y.f in the program
- Why not replace them simply with fresh variables x_f and y_f ?
- Does this assertion hold for two distinct values p, q?

```
var xf = ...
var yf = ...
xf = p
yf = q
assert(xf == p)
```

- Yes. The value of xf is still p
- Does this assertion hold?

```
x.f = p
y.f = q
assert(x.f == p)
```

Depends.

Does the assertion hold in this case:

Does the assertion hold in this case:

- No! y and x are aliased references, denote the same object
- Even though left hand sides x.f and y.f look different, they interfere

Does the assertion hold in this case:

- No! y and x are aliased references, denote the same object
- Even though left hand sides x.f and y.f look different, they interfere

Does it hold in this case?

assume(
$$x\neq y$$
)
 $x.f = p$
 $y.f = q$
assert($x.f == p$)

Does the assertion hold in this case:

- No! y and x are aliased references, denote the same object
- Even though left hand sides x.f and y.f look different, they interfere

Does it hold in this case?

assume(
$$x \neq y$$
)
 $x.f = p$
 $y.f = q$
assert($x.f == p$)

Yes!

Example: wp Computation

- Recall wp $(x := e, Q) = Q[x \mapsto e]$ (substitution)
- Ignoring null checks, we have the following:

$$\begin{split} & \operatorname{wp}(x.f := p; y.f := q \ , \ x.f = p) = \\ & \operatorname{wp}(f = f[x \mapsto p]; f = f[y \mapsto q] \ , \ f(x) = p) = \\ & \operatorname{wp}(f = f[x \mapsto p] \ , \ (f[y \mapsto q])(x) = p) = \\ & ((f[x \mapsto p])[y \mapsto q])(x) = p \end{split}$$

If h is a function then

$$h[a \mapsto b](u) = v \Leftrightarrow (u = a \land v = b) \lor (u \neq a \land v = h(u))$$

Thus

$$((f[x \mapsto p])[y \mapsto q])(x) = p$$

$$\Leftrightarrow (x = y \land p = q) \lor (x \neq y \land p = (f[x \mapsto p])(x))$$

$$\Leftrightarrow (x = y \land p = q) \lor (x \neq y \land p = p)$$

$$\Leftrightarrow (x = y \land p = q) \lor x \neq y$$

Characterizes precisely the weakest condition under which assertion holds

```
class C {
  var f: C
}
```

• Translate into checks and function updates

$$x.f.f = z.f + y.f.f.f$$

```
class C {
  var f: C
}
```

• Translate into checks and function updates

$$x.f.f = z.f + y.f.f.f$$

Solution.

```
\begin{array}{l} \operatorname{assume} \left( z \neq \operatorname{null} \right) \\ \operatorname{assume} \left( y \neq \operatorname{null} \right) \\ \operatorname{assume} \left( f \left( y \right) \neq \operatorname{null} \right) \\ \operatorname{assume} \left( f \left( f \left( y \right) \right) \neq \operatorname{null} \right) \\ \operatorname{assume} \left( f \left( x \right) \neq \operatorname{null} \right) \\ \operatorname{f} := \operatorname{f} \left[ \ f \left( x \right) \ \mapsto \ \left( f \left( z \right) \ + \ f \left( f \left( f \left( y \right) \right) \right) \right) \ \right] \end{array}
```

Modeling Dynamic Allocation

• Can we prove this?

```
x = new C();

y = new C();

assert(x \neq y);
```

Modeling Dynamic Allocation

• Can we prove this?

```
x = new C();

y = new C();

assert(x \neq y);
```

• Can we introduce global variables and assumptions that correctly describe fresh objects?

Modeling Dynamic Allocation

• Can we prove this?

```
x = new C();

y = new C();

assert(x \neq y);
```

- Can we introduce global variables and assumptions that correctly describe fresh objects?
- Global set alloc denotes objects allocated so far

```
x = new C();
```

denotes (for now):

```
havoc(x);
assume(x \notin alloc);
alloc = alloc \cup {x}
```

alloc Set

```
Original program x = new C();
```

```
y = new C();

assert(x \neq y);
```

Renaming variables we obtain:

```
\label{eq:havoc} \begin{split} &\text{havoc}(\textbf{x});\\ &\text{assume}(\textbf{x} \not\in \text{alloc})\\ &\text{alloc}_1 = \text{alloc} \cup \{\textbf{x}\};\\ &\text{havoc}(\textbf{y});\\ &\text{assume}(\textbf{y} \not\in \text{alloc}_1);\\ &\text{alloc}_2 = \text{alloc}_1 \cup \{\textbf{y}\};\\ &\text{assert}(\textbf{x} \neq \textbf{y}); \end{split}
```

Becomes

```
havoc(x);
assume(x ∉ alloc)
alloc = alloc ∪ {x};
havoc(y);
assume(y ∉ alloc);
alloc = alloc ∪ {y};
assert(x≠y);
```

Assertion holds because