Introduction to Formal Methods

Lecture 10
Verifying Programs with Arrays & Dynamic Allocation
Hossein Hojjat & Fatemeh Ghassemi

October 23, 2018

Weakest Precondition Rules: Summary

c wp(c, Q)

Ti=e Qlz — e

assume(b) b—Q

assert(b) wp(b A Q)

havoc(x) Vy.Qlz — y]

c1; €2 wp(c1, wp(cz, Q))

ifbthenc; elsecy | b— wp(cr,Q) A—b— wp(ca,Q)

while b do ¢ I/\ng’.(([/\b%wp(c,[))A(IA—\b%Q))[ngﬂ
(2 are variables modified in ¢ and I is the loop invariant)

Problem with Arrays

alk]l=1; alkl=1;

aljl=2; aljl=2;

x=a[k]+a[j]; :> {a[k]+a[j]=3} :>
{x=3} x=alkl+aljl;

{x=3}

Problem with Arrays

e Now what? Can we use the standard rule for assignment?

wp(z :=e,C) = Clz — €]

alkl=1; alkl=1;

aljl=2; aljl=2;

x=alk]+al[j]; == {alkl+aljl=3})
{x=3} x=alkl+aljl;

{x=3}

Problem with Arrays

e Now what? Can we use the standard rule for assignment?

wp(z :=e,C) = Clz — €]

alkl=1; alkl=1; {1+2=3} = {true}
aljl=2; aljl=2; alkl=1;
x=alk]+al[j]; == {alkl+aljl=3} =) {alk]+2=3}
{x=3} x=alkl+aljl; aljl=2;

{x=3} {alk]+al[j]1=3}

x=alkl+alj];
{x=3}

Problem with Arrays

e Now what? Can we use the standard rule for assignment?

wp(z :=e,C) = Clz — €]

alkl=1; alkl=1; {1+2=3} = {true}
aljl=2; aljl=2; alkl=1;
x=alk]+al[j]; == {alkl+aljl=3} =) {alk]+2=3}
{x=3} x=alkl+aljl; aljl=2;
{x=3} {alk]+al[j]1=3}
x=alkl+alj];
{x=3}

What if k = 5?

Problem with Arrays

e Now what? Can we use the standard rule for assignment?

wp(z :=e,C) = Clz — €]

alkl=1; alkl=1;
aljl=2; aljl=2;
x=alk]+al[j]; == {alkl+aljl=3})
{x=3} x=al[kl+aljl;
{x=3}

What if k = 5?

Problem with Arrays

e Naive array assignment axiom does not work

{QUer] > e} Alea] =2 {Q)
Changes to A[i] may also change A[j], A[k], ...

- (since 7 might equal j, k, ...)

Solution: enrich the assertion language with expressions
A{(il — 62}

Meaning: the array equal to A except that index e; maps to value e

Ali] ifi e

€2 ifi:el

A{61 — 62}[l] = {

Assignment Rule with Theory of Arrays

F {Q[A— A{i— e}]} Ali] :=e {Q}

A5}
{a{k—1}{j—2} [k]+a{k—1}{j—2} [j]1=3}
alk]=1;
alj1=2; alk]=1;
{a [l +a[j1=3} {a{j2} [kl +a{jr2} [51=3}
— aljl=2;

x=alkl+al[j];

{x=3} {alk]+al[j]l=3}

x=alk]l+alj]l;
{x=3}

Exercise

Prove the array sum is correct

{n=>0} A>T F{bAl}ce{l} IA-b—B
o 8 - {A} while bdoc {B)
while (j<n) dof{

s = s + aljl;

=i+
}

{ s = Z()§i<n a[i] }

Exercise

Prove the array sum is correct

{n>0} A=T F{bAT} c{I} IN-b— B

j = 85 - {A)} while bdo c {B}

s = 0;

while (j<n) do{ Choose invariant (s =3 o, ;ali) ANO<j<n
s = s + aljl; Step 1. Prove invariant is maintained throughout the
j =3+ 1 loop

+

{s = Yocicn 2lil } i<nA(s=) aihr0<j<n}

0<i<y
s =s+ aljl; =3 +1

{(s = Z ali)) NO < j <n}

0<i<j

Exercise

Prove the array sum is correct

{n>0} A=T F{bAI}c{l} IAN-b—B
j = 85 - {A} while bdo ¢ {B}
s = H
while (j<n) do{ Choose invariant (s =3 o, ;ali) ANO<j<n

s = s + aljl; Step 2. Prove invariant is initially true

j =3+ 1
} {n >0}
s = Docicn 2lil } i=0; s=0

{(s= > alilr0<j<n}
0<i<j

Exercise

Prove the array sum is correct

{n>0} A—=T +F{bAI}c{l} IAN-b—B
j = 85 - {A} while bdo ¢ {B}
s = 5
while (j<n) do{ Choose invariant (s =3 o, ;ali) ANO<j<n
s = s + aljl; Step 3. Prove invariant and exit condition implies
=3+ 1 postcondition
+
{ S = Z()S’i<n a[i] } ((S: Z ahDAOSJSn/\jZﬂ)%
0<i<j
= 3
0<i<n

Proof Obligations

Step 1. Prove invariant is maintained throughout the loop

{(s+aljl= > ali)A0<j+1<n} (byassignment rule)
0<i<j+1

s = s + alj]

{(s = Z ali) NO<j+1<n} (by assignment rule)
0<i<j+1

j=3+1

{(s = Z ali)) NO < j <n}
0<i<j

Need to show:

(0<j<nA(s=> < ali) Nj<n)—
(0<j+1<nA(s+ali]l = cicjiialil)

Proof Obligations

Step 2. Prove invariant is initially true

{(0= Z ali)) N0 <0< n} (by assignment rule)
0<i<0

3 =20

{(0= Z ali)) NO < j < n} (by assignment rule)
0<i<j

s =0

{(s = Z ali)) NO < j <n}
0<i<j

Need to show:

(n20) = (0= ocicoali) NO<O<n

Proof Obligations

Step 3. Prove invariant and exit condition implies postcondition

((s:zonga[i])/\Ogjgn/\jZn)%

(s = ZO§i<n ali])

Exercise

Consider the following program:

{0<i<n}

j = i+1 ;

while (j<n) { v n
ali] = max(alil,aljl); | |
U T T IITT]

} !

{ v7'§Ia'<n (10[/4] < 0[7} }

Is the following a loop invariant?
{Vi<k<j aolk] <ali] AO <j < n}

(ap is the initial array)

Invariant Proof

Prove invariant is maintained throughout the loop
{Vi<k<j+1 aolk] < max(a[i], a[j]) AO < j+1<n}
{Vi<k<jt1 aolk] < a{i— max(a[i],alj])}[i] A0 < j+1<n} (byarray assignment)
ali]l = max(a[il,al]])
{Vi<k<jt1 aolk] <ali]ANO<j+1<n} (by assignment)
j=3+1
{Vi<k<j aolk] <ali] ANO < j<n}

Need to show:

(vigk<j ao[k] < (L[Z} /\J < n) —
(Vi<k<j+1 aolk] < max(ald,a[j) A\O<j+1<n)

We don’t know that aq[j] < max(a[i],a[j]) !

?

Conjoin a new constraint (Vj<p<n alk] = aolk]) Ni < j

10

Array Bounds

e Check if an array index is within the bounds of the array

x := a[i]

assert (0<iAi< size(a))

x := alil]

afi] := x

assert (0<iAi< size(a))
a := alir>x]

11

Linked List Example

insert (first ,n):

if (first == null)
first = n;
else {
<:> n.next = first;
first.prev = n;
first = n;
}

How to verify such code?

12

Linked List Example

insert (first ,n):

if (first == null)
first = n;
else {
n.next = first;
first.prev = n;
next = {(01,02), (02,03), (03,04)} first = n;
}

prev = {(027 Ol)a (03702)7 (04, 03)}

) Change of relations
first

next (partial functions):

next

next’ = next U {(n,01)}

prev prev prev prev

prev’ = prev U {(o1,n)}
next = {(01, 02), (02,03), (03, 04), (n,01)}

prev = {(02,01), (03, 02), (04,03), (01,n)} using assignments:
next = next[n > first]

prev = prevl[first —> n] 12

Reading Fields

Statement

y = X.next

Computes the value of y simply as
y = next (x)

We should not de-reference null

assert (x # null);
y = next (x)
e We assume that the type system ensures that if x is not null then
the value next (x) is defined
e Otherwise, we could add the corresponding check

assert(x € dom(next));
y = next(x)

13

Writing Fields

We represent each field using a global partial function

Statement

X.next =y

Changes heap according to this update:
next’ = next [x—y]

which is a notation that expands to:

next' = {(u,v)|[(u =z Av=y)V (u#xA (u,v) € next)}

We should not assign fields of null so we also add this check

assert (x#null);
next’ = next [x—y]

14

Why we Need Functions?

Say we have x.f and y. f in the program

Why not replace them simply with fresh variables x: and y¢?

Does this assertion hold for two distinct values p, g?
var xf =

var yf =

xf = p

vyt = q

assert (xf == p)
Yes. The value of xf is still p

15

Why we Need Functions?

Say we have x.f and y. f in the program

Why not replace them simply with fresh variables x: and y¢?

Does this assertion hold for two distinct values p, g?
var xf =

var yf =

xf = p

vyt = q

assert (xf == p)

Yes. The value of xf is still p

Does this assertion hold?

x.f =p

y-£f =24
assert(x.f == p)

15

Why we Need Functions?

Say we have x.f and y. f in the program

Why not replace them simply with fresh variables x: and y¢?

Does this assertion hold for two distinct values p, g?
var xf =

var yf =

xf = p

vyt = q

assert (xf == p)
Yes. The value of xf is still p

Does this assertion hold?

x.f =p

y-£f =24
assert(x.f == p)

Depends.

15

Does the assertion hold in this case:

X =y
x.f =p

y.f =gq N
assert(x.f == p) f q

16

Does the assertion hold in this case:

x
Y
X =y l/
x.f = p e
y.f =gq f
assert(x.f == p) fi q

p

e No! v and x are aliased references, denote the same object
e Even though left hand sides x. f and y. £ look different,
they interfere

16

Does the assertion hold in this case:

x

Y

X =y l/
x.f = p ‘:'
y.f =gq f

assert(x.f == p) fi q

p

e No! v and x are aliased references, denote the same object
e Even though left hand sides x. f and y. £ look different,
they interfere
Does it hold in this case?
T Y
assume (x#y) l l
x.f =p ‘:’ ‘!’
y-f =4
f f
p q

assert(x.f == p)
16

Does the assertion hold in this case:

x
Y
X =y l/
x.f = p e
y.f = q f
assert(x.f == p) fi q
b

e No! v and x are aliased references, denote the same object
e Even though left hand sides x. f and y. £ look different,
they interfere

Does it hold in this case?
x Yy

assume (x#y) l l

x.f = p ‘:’ ‘!’

y.f = ¢q Yes!
f f
p q

assert(x.f == p)
16

Example: wp Computation

e Recall wp(z :=e,Q) = Q[z — €] (substitution)

e Ignoring null checks, we have the following:
wp(z.f =p;y.fi=q, z.f=p)=
wp(f =fle=plif=fly—d, flz)=p)=
wp(f = fle = pl, (fly—d)(z) =p) =
((flz = pDly = g))(@) =p

e If i is a function then
hla—bl(u)=v<e (u=aAv=>0)V (u#aAv=h(u))
e Thus
(flz = pDly = g))(x) =p
e@=yAp=q) V(@ #yrp=(flz—p])(z))
S@=yAp=qV(E@#FyAp=p)

Slx=yAp=qVz#y
Characterizes precisely the weakest condition under which assertion holds 17

Exercise

class C {
var f: C

3

e Translate into checks and function updates

x.f.f =z.f + y.£f.f.£f

18

Exercise

class C {

var f: C

3

e Translate into checks and function updates

x.f.f =z.f + y.£f.f.£f
Solution.
assume (z#null)
assume (y#null)
assume (f (y)#null)

assume (f (£ (y))#null)
assume (f (x)#null)

£ o=] £ b (£(2) + £EEG)) |

18

Modeling Dynamic Allocation

e Can we prove this?

x = new C();
y = new CQ);
assert (x#y);

19

Modeling Dynamic Allocation

e Can we prove this?

x = new C();
y = new CQ);
assert (x#y);

e Can we introduce global variables and assumptions that correctly
describe fresh objects?

19

Modeling Dynamic Allocation

e Can we prove this?

x = new C();
y = new CQ);
assert (x#y);

e Can we introduce global variables and assumptions that correctly
describe fresh objects?

e Global set alloc denotes objects allocated so far

x = new CQ);

e denotes (for now):

havoc (x);
assume (x ¢ alloc);
alloc = alloc U {x}

19

alloc Set

Original program Becomes

x = new C(); havoc (x);

y = new C(); assume (x ¢ alloc)

assert (x#£y) ; alloc = alloc U {x1};
havoc (y);

assume (y ¢ alloc);
alloc = alloc U {y};
assert (x#y) ;

Renaming variables we obtain: Assertion holds because

havoc (x); (allocy = alloc U {x}) A
assume (x ¢ alloc) (y ¢ allocy) —
allocy = alloc U {x}; XF£y
havoc (y);

assume (y ¢ allocy);
allocy, = allocy; U {y};
assert (x#£y) ; 20

