
Introduction to Formal Methods

Lecture 11

Hoare Logic for Concurrent Programs

Hossein Hojjat & Fatemeh Ghassemi

October 28, 2018

Program Veri�cation with Hoare Triples

• Is the following true?

{x = 0}

y := x;

x := x + 1;

{x = 1 ∧ y = 0}

• YES!

• NO!

• The parallel process may interfere with the intermediate assertions

1

Program Veri�cation with Hoare Triples

• Is the following still true?

{x = 0}

y := x;

x := x + 1;

{x = 1 ∧ y = 0}

‖ x := 5;

• NO!

• The parallel process may interfere with the intermediate assertions

1

Program Veri�cation with Hoare Triples

• Is the following still true?

{x = 0}

y := x;

x := x + 1;

{x = 1 ∧ y = 0}

‖ x := 5;

• NO!

• The parallel process may interfere with the intermediate assertions

1

Program Veri�cation with Hoare Triples

• Is the following still true?

{x = 0}

y := x;

{x + 1 = 1 ∧ y = 0}

x := x + 1;

{x = 1 ∧ y = 0}

‖ x := 5;

• NO!

• The parallel process may interfere with the intermediate assertions

1

Program Veri�cation with Hoare Triples

• Is the following still true?

{x = 0}

y := x;

{x + 1 = 1 ∧ y = 0}

x := x + 1;

{x = 1 ∧ y = 0}

‖ x := 5;

• NO!

• The parallel process may interfere with the intermediate assertions

1

Parallel Composition

• Extend the language of previous lectures with parallel composition

e ::= n | x | e1 + e2 | e1 = e2
c ::= x := e | if e then c1 else c2 |

while e do c | skip | c1 ; c2 |
c1 ‖ c2

2

Rule for Parallel Composition

• Can we derive a Hoare triple for parallel composition from the triples

of each command?

First Attempt:

` {P1} c1 {Q1} ` {P2} c2 {Q2}
` {P1 ∧ P2} c1 ‖ c2 {Q1 ∧Q2}

• Intuition: if we satisfy the preconditions of c1 and c2,

their postconditions will be satis�ed too

3

Unsoundness of First Attempt

` {P1} c1 {Q1} ` {P2} c2 {Q2}
` {P1 ∧ P2} c1 ‖ c2 {Q1 ∧Q2}

• This rule is not always sound, consider:

{x = 1} y := 0 {x = 1} {true} x := 10 {true}

• It does not hold that

{x = 1 ∧ true} y := 0 ‖ x := 10 {x = 1 ∧ true}

4

Second Attempt

` {P1} c1 {Q1} ` {P2} c2 {Q2}
` {P1 ∧ P2} c1 ‖ c2 {Q1 ∧Q2}

• If c1 and c2 do not read and write the same variables,

and all the pres- and post- conditions talk about di�erent variables

• What's wrong with this?

• No way to prove some program

• The rule is incomplete

4

Second Attempt

` {P1} c1 {Q1} ` {P2} c2 {Q2}
` {P1 ∧ P2} c1 ‖ c2 {Q1 ∧Q2}

• If c1 and c2 do not read and write the same variables,

and all the pres- and post- conditions talk about di�erent variables

• What's wrong with this?

• No way to prove some program

• The rule is incomplete

4

Third Attempt

` {P1} c1 {Q1} ` {P2} c2 {Q2}
` {P1 ∧ P2} c1 ‖ c2 {Q1 ∧Q2}

• If a command does not modify any variable from the pre-condition

of the other triple

• Let UPD(c) be the set of variables that are updated (modi�ed) in c

FV(P1) ∩ UPD(c2) = ∅
FV(P2) ∩ UPD(c1) = ∅

• Still incomplete: cannot prove

4

Third Attempt

` {P1} c1 {Q1} ` {P2} c2 {Q2}
` {P1 ∧ P2} c1 ‖ c2 {Q1 ∧Q2}

• If a command does not modify any variable from the pre-condition

of the other triple

• Let UPD(c) be the set of variables that are updated (modi�ed) in c

FV(P1) ∩ UPD(c2) = ∅
FV(P2) ∩ UPD(c1) = ∅

• Still incomplete: cannot prove

{x = 0}

x := x + 1 ‖ x := x + 2

{x = 3}

4

Fourth Attempt

` {P1} c1 {Q1} ` {P2} c2 {Q2}
` {P1 ∧ P2} c1 ‖ c2 {Q1 ∧Q2}

If UPD(c1) ∩ (FV(P2) ∪ FV(Q2)) = ∅ and UPD(c2) ∩ (FV(P1) ∪ FV(Q1)) = ∅

4

Fourth Attempt

` {P1} c1 {Q1} ` {P2} c2 {Q2}
` {P1 ∧ P2} c1 ‖ c2 {Q1 ∧Q2}

If UPD(c1) ∩ (FV(P2) ∪ FV(Q2)) = ∅ and UPD(c2) ∩ (FV(P1) ∪ FV(Q1)) = ∅

Still unsound. Consider:

{x = 0} y := x; z := y {z = 0} {true} y := 10 {true}

It does not hold that

{x = 0 ∧ true} y := x; z := y ‖ y := 10 {z = 0 ∧ true}

Diagnose: y := 10 interferes with the proof of

{x = 0} y := x; z := y {z = 0}

y = 0 4

Owicki-Gries Reasoning

• Susan Owicki,

�Axiomatic proof techniques for parallel programs�,

Cornell University, Ithaca, NY, 1975

• Under supervision of Prof. David Gries

• First complete logic for partial correctness of concurrent

programs that communicate using shared variables

5

Interference Freedom

• Interference Freedom: every assertion used in the local veri�cation

is not invalidated by the execution of the other process
P1: P2:

{p1} {q1}
c1 a1
{p2} {q2}
c2 a2
· · · · · ·

We say that they are interference free i�

∀pi ∈ assertions of P1 ∧ ∀aj ∈ atomic actions of P2,

{pi ∧ pre aj}
aj
{pi}

(and vice versa)

• If P1 has n statements and P2 has m statements, proving

interference freedom requires proving O(n×m) correctness formulas 6

Owicki-Gries method (1976)

` {P1} c1 {Q1}
` {P2} c2 {Q2}

the two proofs are non-interfering

` {P1 ∧ P2} c1 ‖ c2 {Q1 ∧Q2}

7

Example

• These two proof outlines are correct but not interference free

• For example, the assertion x = 0 is not preserved against the atomic

action x := x+ 2

{x = 0}
x := x+ 2;

{x = 2}
‖

{true}
x := 0;

{x = 0}

{x = 0 ∧ x = 0}
x := x+ 2;

{x = 0}

• By weakening the postconditions we obtain both correct and

interference free proof outlines:

{x = 0}
x := x+ 2;

{x = 0 ∨ x = 2}
‖

{true}
x := 0;

{x = 0 ∨ x = 2}

{(x = 0 ∨ x = 2) ∧ x = 0}
x := x+ 2;

{x = 0 ∨ x = 2} ⇒

{x = 0}
x := x+ 2;

{x = 0 ∨ x = 2}

8

Completeness

• Can you prove the following?

• We can prove something weaker

{x = 0}

{x = 0 ∨ x = 1}

x := x+ 1

{x = 1 ∨ x = 2}

‖

{x = 0 ∨ x = 1}

x := x+ 1

{x = 1 ∨ x = 2}

{x = 2}

• But how can we derive the postcondition x = 2?

• We need auxiliary variables:

• Variables that do not a�ect the control �ow nor the data �ow of the

other variables, but record information useful for the proof

9

Completeness

• Can you prove the following?

• We can prove something weaker

{x = 0}
{x = 0 ∨ x = 1}

x := x+ 1

{x = 1 ∨ x = 2}
‖

{x = 0 ∨ x = 1}
x := x+ 1

{x = 1 ∨ x = 2}

{x = 1 ∨ x = 2}

• But how can we derive the postcondition x = 2?

• We need auxiliary variables:

• Variables that do not a�ect the control �ow nor the data �ow of the

other variables, but record information useful for the proof

9

Auxiliary Variables

Add two auxiliary variables a and b:

Represent the contribution of each thread to x

{x = 0}
(a, b) := (0, 0)

{x = a+ b ∧ a = 0 ∧ b = 0}
{x = a+ b ∧ a = 0}

(x, a) := (x+ 1, 1)

{x = a+ b ∧ a = 1}

‖

{x = a+ b ∧ b = 0}

(x, b) := (x+ 1, 1)

{x = a+ b ∧ b = 1}

{x = 2}

(x1, x2) := (e1, e2) atomic parallel assignment

10

Auxiliary Variables

Add two auxiliary variables a and b:

Represent the contribution of each thread to x

{x = 0}
(a, b) := (0, 0)

{x = a+ b ∧ a = 0 ∧ b = 0}
{x = a+ b ∧ a = 0}
(x, a) := (x+ 1, 1)

{x = a+ b ∧ a = 1}
‖

{x = a+ b ∧ b = 0}
(x, b) := (x+ 1, 1)

{x = a+ b ∧ b = 1}

{x = 2}

(x1, x2) := (e1, e2) atomic parallel assignment

10

Horn Clauses for Concurrent Counters

Global Variable: n

P1[n = 0]

P2

n′ = n− 1 n′ = n+ 1
‖ Q1[n = 0]

Q2

n′ = n+ 1 n′ = n− 1

Left Thread

n = 0 → P1(n)

P1(n) ∧ n′ = n+ 1 → P2(n
′)

P2(n) ∧ n′ = n− 1 → P1(n
′)

Right Thread

n = 0 → Q1(n)

Q1(n) ∧ n′ = n− 1 → Q2(n
′)

Q2(n) ∧ n′ = n+ 1 → Q1(n
′)

Q2(n) ∧ P2(n) ∧ (n = 0)→ false

Unsound: proves to be correct although the real system does not have the property

P1(n) ≡ (n = 0) P2(n) ≡ (n = 1) Q1(n) ≡ (n = 0) Q2(n) ≡ (n = −1)

11

Horn Clauses for Concurrent Counters

Global Variable: n

P1[n = 0]

P2

n′ = n− 1 n′ = n+ 1
‖ Q1[n = 0]

Q2

n′ = n+ 1 n′ = n− 1

Left Thread

n = 0 → P1(n)

P1(n) ∧ n′ = n+ 1 → P2(n
′)

P2(n) ∧ n′ = n− 1 → P1(n
′)

Right Thread

n = 0 → Q1(n)

Q1(n) ∧ n′ = n− 1 → Q2(n
′)

Q2(n) ∧ n′ = n+ 1 → Q1(n
′)

Q2(n) ∧ P2(n) ∧ (n = 0)→ false

Unsound: proves to be correct although the real system does not have the property

P1(n) ≡ (n = 0) P2(n) ≡ (n = 1) Q1(n) ≡ (n = 0) Q2(n) ≡ (n = −1)
11

Owicki-Gries Interference-Free Conditions

Global Variable: n

P1[n = 0]

P2

n′ = n− 1 n′ = n+ 1
‖ Q1[n = 0]

Q2

n′ = n+ 1 n′ = n− 1

P1(n, 1) ∧Q1(n, 1) ∧ n′ = n+ 1→ Q1(n
′, 2)

P1(n, 2) ∧Q2(n, 1) ∧ n′ = n+ 1→ Q2(n
′, 2)

P2(n, 1) ∧Q1(n, 2) ∧ n′ = n− 1→ Q1(n
′, 1)

P2(n, 2) ∧Q2(n, 2) ∧ n′ = n− 1→ Q2(n
′, 1)

Q1(n, 1) ∧ P1(n, 1) ∧ n′ = n− 1→ P1(n
′, 2)

Q1(n, 2) ∧ P2(n, 1) ∧ n′ = n− 1→ P2(n
′, 2)

Q2(n, 1) ∧ P1(n, 2) ∧ n′ = n+ 1→ P1(n
′, 1)

Q2(n, 2) ∧ P2(n, 2) ∧ n′ = n+ 1→ P2(n
′, 1)

11

Owicki-Gries Interference-Free Conditions

Global Variable: n

P1[n = 0]

P2

n′ = n− 1 n′ = n+ 1
‖ Q1[n = 0]

Q2

n′ = n+ 1 n′ = n− 1

P1(n, 1) ∧Q1(n, 1) ∧ n′ = n+ 1→ Q1(n
′, 2)

P1(n, 2) ∧Q2(n, 1) ∧ n′ = n+ 1→ Q2(n
′, 2)

P2(n, 1) ∧Q1(n, 2) ∧ n′ = n− 1→ Q1(n
′, 1)

P2(n, 2) ∧Q2(n, 2) ∧ n′ = n− 1→ Q2(n
′, 1)

Q1(n, 1) ∧ P1(n, 1) ∧ n′ = n− 1→ P1(n
′, 2)

Q1(n, 2) ∧ P2(n, 1) ∧ n′ = n− 1→ P2(n
′, 2)

Q2(n, 1) ∧ P1(n, 2) ∧ n′ = n+ 1→ P1(n
′, 1)

Q2(n, 2) ∧ P2(n, 2) ∧ n′ = n+ 1→ P2(n
′, 1)

11

Monolithic Encoding

Global Variable: n

P1[n = 0]

P2

n′ = n− 1 n′ = n+ 1
‖ Q1[n = 0]

Q2

n′ = n+ 1 n′ = n− 1

• Uses only one relation symbol to model the system: R(id, n, t1, t2)

• Invariant covering the whole system

• Simpler and creates more elegant solutions

(n = 0) ∧ (t1 = 1) ∧ (t2 = 1) → R(id, n, t1, t2)

R(1, n, 1, t2) ∧ (n′ = n+ 1) → R(1, n′, 2, t2)

R(1, n, 2, t2) ∧ (n′ = n− 1) → R(1, n′, 1, t2)

R(2, n, t1, 1) ∧ (n′ = n− 1) → R(2, n′, t1, 2)

R(2, n, t1, 2) ∧ (n′ = n+ 1) → R(2, n′, t1, 1)
11

Monolithic Encoding

Global Variable: n

P1[n = 0]

P2

n′ = n− 1 n′ = n+ 1
‖ Q1[n = 0]

Q2

n′ = n+ 1 n′ = n− 1

Interference-Free Conditions

R(1, n, 1, t2) ∧R(2, n, 1, t2) ∧ (n′ = n+ 1) → R(2, n′, 2, t2)

R(1, n, 2, t2) ∧R(2, n, 2, t2) ∧ (n′ = n− 1) → R(2, n′, 1, t2)

R(2, n, t1, 1) ∧R(1, n, t1, 1) ∧ (n′ = n− 1) → R(1, n′, t1, 2)

R(2, n, t1, 2) ∧R(1, n, t1, 2) ∧ (n′ = n+ 1) → R(1, n′, t1, 1)

11

Rule for Parallel Composition

` {P1} c1 {Q1}
` {P2} c2 {Q2}

interference freedom

` {P1 ∧ P2} c1 ‖ c2 {Q1 ∧Q2}

• This rule is not compositional

• The speci�cation of a program c is not just {P}_{Q},
but also all the intermediate assertions in the outline

• A change in one of the components may a�ect the proof,

not only of the modi�ed component, but also of all the others

12

Rely-Guarantee

• Rely-Guarantee is a well-known compositional method for proving

Hoare logic properties of concurrent programs

• Rough idea: instead of trying to write interference-free proofs,

explicitly account for the allowed interference

• No additional interference checks required

• Pioneered by Cli� Jones (1981, 1983)

13

Rely-Guarantee

R,G ` {P} c {Q}

• Pre-condition P (x) assertion describing initial state

• Rely condition R(x, x′) relation describing atomic steps of environment

• Post-condition Q(x) assertion describing �nal state

• Guarantee condition G(x, x′) relation describing atomic steps of the program

s0
env−−→s1

prog−−→s2
env−−→s3

prog−−→s4
prog−−→s5

env−−→s6 · · · sn−1
prog−−→sn

If P (s0) and R(si, si+1) for all si
env−−→si+1,

then G(sj , sj+1) for all sj
prog−−→sj+1, and Q(sn) (the �nal state).

14

Example

{x = 0}
G2, G1 ` {x = 0 ∨ x = 2}

x := x+ 1

{x = 1 ∨ x = 3}
‖

G1, G2 ` {x = 0 ∨ x = 1}
x := x+ 2

{x = 2 ∨ x = 3}

{x = 3}

G1 ≡ (x = 0 ∧ x′ = 1) ∨ (x = 2 ∧ x′ = 3)

G2 ≡ (x = 0 ∧ x′ = 2) ∨ (x = 1 ∧ x′ = 3)

15

References

• Susan Owicki and David Gries: �An Axiomatic Proof Technique for

Parallel Programs�, Acta Informatica, 1976.

• Viktor Vafeiadis: �Modular �ne-grained concurrency veri�cation�,

PhD thesis, University of Cambridge, 2007.

• Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, Andrey

Rybalchenko: �Synthesizing Software Veri�ers from Proof Rules�,

PLDI 2012.

• Hossein Hojjat, Philipp Rümmer, Pavle Subotic, Wang Yi:

�Horn Clauses for Communicating Timed Systems�, HCVS 2014.

16

