Introduction to Formal Methods

Lecture 11
Hoare Logic for Concurrent Programs
Hossein Hojjat & Fatemeh Ghassemi

October 28, 2018

Program Verification with Hoare Triples

e |s the following true?

{x = 0}
y = x
X 1= x + 1;

{x=1Ay=0}

e YES!

Program Verification with Hoare Triples

e |s the following still true?

{x =0}
y =K

=] 5;
x = x + 1 H *

{x=1Ay=0}

Program Verification with Hoare Triples

e |s the following still true?

{x =0}
y =K

=] 5;
x = x + 1 H *

{x=1Ay=0}

e NO!

Program Verification with Hoare Triples

e |s the following still true?

{x =0}
y = X
=5;
{x+1=1Ay=0} H *
X = x + 1;

{x=1Ay=0}

e NO!

Program Verification with Hoare Triples

e |s the following still true?

{x = 0}

yoEm x := b;
=ty =17

X = x + 1;

{x=1Ay=0}

e NO!

e The parallel process may interfere with the intermediate assertions

Parallel Composition

e Extend the language of previous lectures with parallel composition

ex= n | x| ext+er | e1=e€y
ci:= wx:=e | if ethen ¢; else ¢y |
whilee do ¢ | skip | ¢1; ¢2 |

(4] H C2

Rule for Parallel Composition

e Can we derive a Hoare triple for parallel composition from the triples
of each command?

First Attempt:

= {])1} C1 {(21} H {1)2} Co {(22}
FA{PL APy} ci | c2 {Q1 N Q2}

e Intuition: if we satisfy the preconditions of ¢; and c¢q,
their postconditions will be satisfied too

Unsoundness of First Attempt

F{Pi} e {@1} F {P} 2 {Q2}
FA{PLA P} e | e2 {Q1 A Q2}

e This rule is not always sound, consider:
{z=1} y:=0 {x=1} {true} = :=10 {true}
e |t does not hold that

{x=1Atrue} y:=0|z:=10 {z=1A true}

Second Attempt

F{Pi} e {@1} F {P} 2 {Q2}
FA{PLA P} e | e2 {Q1 A Q2}

e If ¢c; and ¢y do not read and write the same variables,
and all the pres- and post- conditions talk about different variables

e What's wrong with this?

Second Attempt

F{Pi} e {@1} F {P} 2 {Q2}
FA{PLA P} e | e2 {Q1 A Q2}

e If ¢c; and ¢y do not read and write the same variables,
and all the pres- and post- conditions talk about different variables

What's wrong with this?

No way to prove some program

The rule is incomplete

Third Attempt

F{Pi} e {@1} F {P} 2 {Q2}
FA{PLA P} e | e2 {Q1 A Q2}

e If a command does not modify any variable from the pre-condition
of the other triple

e Let UPD(c) be the set of variables that are updated (modified) in ¢
FV(Py) N UPD(c2) =0
FV(P2) N UPD(cy) =0

Third Attempt

F{Pi} e {@1} F {P} 2 {Q2}
FA{PLA P} e | e2 {Q1 A Q2}

e If a command does not modify any variable from the pre-condition
of the other triple
e Let UPD(c) be the set of variables that are updated (modified) in ¢
FV(Py) N UPD(cy) =10
FV(P,) N UPD(cy) =0

e Still incomplete: cannot prove

{x=0}

x i =x+1 || x :=x+2

{x = 3}

Fourth Attempt

F{Pi} e {@1} F {P} 2 {Q2}
FA{PLA P} e | e2 {Q1 A Q2}

If UPD(c1) N (FV(Py) U FV(Q2)) =0 and UPD(co) N (FV(P1) U FV(Q1)) =10

Fourth Attempt

F{Pi} e {@1} F {P} 2 {Q2}
FA{PLA P} e | e2 {Q1 A Q2}

If UPD(cq) N (FV(Py) U FV(Q2)) =0 and UPD(co) N (FV(P1) U FV(Q1)) =0
Still unsound. Consider:

{r =0} yi=x;2:=y {z=0} {true} y:=10 {true}

It does not hold that
{r=0Atrue} y:=x;z:=y | y:=10 {z=0A true}
Diagnose: y := 10 interferes with the proof of
{r=0} y:=z;2:=y {z=0}

y=0 4

Owicki-Gries Reasoning

e Susan Owicki,
“Axiomatic proof techniques for parallel programs”,
Cornell University, Ithaca, NY, 1975
e Under supervision of Prof. David Gries

e First complete logic for partial correctness of concurrent
programs that communicate using shared variables

Interference Freedom

e Interference Freedom: every assertion used in the local verification
is not invalidated by the execution of the other process

Pr: Py:
{p1} {a1}
C1 ay
{p2} {42}

We say that they are interference free iff

Vp; € assertions of P; A Va; € atomic actions of P,
{pi A pre a;}
a;
{pz‘}

(and vice versa)

e If P, has n statements and P, has m statements, proving
interference freedom requires proving O(n x m) correctness formulas

Owicki-Gries method (1976)

F {Pl} @1 {(21}
F {P} co {Q2}

the two proofs are non-interfering
= {P] /\PQ} Cc1 || Co {Q] /\Qg}

e These two proof outlines are correct but not interference free

e For example, the assertion = 0 is not preserved against the atomic
action x :=x + 2

{z =0} {true} {x =0A2 =0}
T:=x42; H x:=0; T =z 2
{z =2} {z =0} {z =0}

e By weakening the postconditions we obtain both correct and
interference free proof outlines:

{z =0} {true} {x=0vz=2)ANz =0} {z =0}
4B = 1B - 2% || x = 0; B 3= 48 4 25 93 3= 4B = 2%
{r=0ve=2}! {z=0ve=2} {z=0vz=2} :>{;(f:0\/af:2}

Completeness

e Can you prove the following?

z=z+1 H z:=z+1

Completeness

e Can you prove the following?

e \We can prove something weaker

{z =0}
{r=0Vvz=1} {r=0Vvz=1}
r:i=x+1 H r:i=x+1
{r=1ve=2} {r=1ve=2}

{x=1Vva=2}

e But how can we derive the postcondition z = 27
e We need auxiliary variables:

e Variables that do not affect the control flow nor the data flow of the
other variables, but record information useful for the proof

Auxiliary Variables

Add two auxiliary variables a and b:
Represent the contribution of each thread to z

{z =0}
(a,b) :=(0,0)
(z,a) == (z +1,1) | (2,b) = (z +1,1)
fo=2)
(x1,22) := (e1,e2) atomic parallel assignment

10

Auxiliary Variables

Add two auxiliary variables a and b:
Represent the contribution of each thread to z

{z =0}

(a,b) :=(0,0)
{zr=a+bANa=0Ab=0}
{r=a+bANa=0} {r=a+bAb=0}
(z,a) == (z+1,1) | (,b) = (z+1,1)
{r=a+bAra=1} {r=a+bAb=1}
{z =2}

(x1,22) := (e1,e2) atomic parallel assignment

10

Horn Clauses for Concurrent Counters

Global Variable: n

n=n-—1 n=n+1 n=n+1 n=n-1
Left Thread Right Thread
n=0 — Pi(n) n=20 - Qi(n)
Pi(n)An ' =n+1 — P(n) Qin)An =n—1 — Q2(n)
P(n)An'=n—-1 — Pi(n) Q2n)An' =n+1 — Qi(n)
Q2(n) A Py(n) A (n=0) — false

11

Horn Clauses for Concurrent Counters

Global Variable: n

n=n-—1 n=n+1 n=n+1 n=n-1
Left Thread Right Thread
n=0 — Pi(n) n=0 - Qi(n)
Pi(n)An ' =n+1 — P(n) Qin)An =n—1 — Q2(n)
P(n)An'=n—-1 — Pi(n) Q2n)An' =n+1 — Qi(n)

Q2(n) A Py(n) A (n=0) — false

Unsound: proves to be correct although the real system does not have the property

s
—
3
~
1l
—
S
I
o
=

Bn)=mn=1) Qin)=n=0) Q(n)=(m=-1),

Owicki-Gries Interference-Free Conditions

Global Variable: n

Pin,)AQi(n,))An' =n+1—Q:1(n/,2)
Pi(n,2) AQz2(n, 1) An' =n+1—= Qa(n,2)
Py(n,1) AQ1(n,2) An' =n—1— Q1(n',1)
Py(n,2) AQ2(n,2) An' =n—1— Qa(n/, 1)
Qi(n,1)ANPi(n,1)An' =n—1— P (n,2)
Q1(n,2) AN Pa(n,1) An' =n—1— Py(n/,2)
Q2n, 1) ANPi(n,2) An' =n+1— P (n,1)
Q2(n,2) AN Pa(n,2) An' =n+1— Py(n/,1) 1

11

=n-—1

H AR B N
= EEEEREER
1212(.“(((
[oo AA A
£ TTtTTTTTT
n — = o o = e =
- + + 1+ A+
o f 22 g g g
8 I T T T
= R RRRRRERRE
= << << <K< <K<<K<
.m T N N TN
O EEEEEEEE
— N
ey
< <

—

IT

S

: - - S
@ LSS SS

i

!

Il

(2]
c
S
=
©
=
o
O
[}
[N}
S
LL
|
[}
(@]
c
[}
S
g
S
(<)}
=)
£
[72]
<)}
=
3
g
o
2
@

Monolithic Encoding

Global Variable: n

e Uses only one relation symbol to model the system: R(id,n,t1,ts)

e Invariant covering the whole system

e Simpler and creates more elegant solutions

mM=0)A(t1=1)A(ta=1) — R(id,n,ty,ts)
R(1,n,Lits) A(n ' =n+1) — R(1,n,2,ts)
R(1,n,2,t2) A (0" =n—-1) — R(1,n/,1,ts)
R(2,n,t1,H)A(n =n—-1) — R(2,n,t1,2)
R(2,n,t1,2)A (0 =n+1) — R(2,n,t1,1)

11

Monolithic Encoding

Global Variable: n

®) @)

Interference-Free Conditions

R(1,n,1,t2) AR(2,n,1,t2) A(n =n+1) — R(2,n/,2,t2)
R(1,n,2,t2) AR(2,n,2,t5) A(n =n—1) — R(2,n/,1,t)
R(2,n,t1, 1) AR(I,n,t;, 1) A(n =n—-1) — R(1,n,,2)
R(2,n,t1,2) AR(1,n,t1,2) A(n =n+1) — R(1,n,t1,1)

11

Rule for Parallel Composition

F {Pi} e1 {Q1}
F {P} c2 {Q2}
interference freedom

= {])1 A 1)2} Ci || C2 {(21 A (22}

e This rule is not compositional

e The specification of a program c is not just {P} {Q},
but also all the intermediate assertions in the outline

e A change in one of the components may affect the proof,
not only of the modified component, but also of all the others

12

Rely-Guarantee

Rely-Guarantee is a well-known compositional method for proving
Hoare logic properties of concurrent programs

Rough idea: instead of trying to write interference-free proofs,
explicitly account for the allowed interference

No additional interference checks required
Pioneered by Cliff Jones (1981, 1983)

13

Rely-Guarantee

R,GHA{P} c {0}

e Pre-condition P(x) assertion describing initial state
e Rely condition R(x,a”) relation describing atomic steps of environment
e Post-condition ()(x) assertion describing final state

e Guarantee condition G/(x,2') relation describing atomic steps of the program

env prog env prog prog env prog
So—>81—+S2— 83— +S4— 7S5 786" " Sp—1— Sn

If P(sg) and R(si, si1) for all s;—s;11,
then C/(s;,5;41) for all 5; 75,1, and ()(s,) (the final state).

14

{w =0}
Go, F{z=0Vvaz=2} ,GoF{z=0Vvza=1}
z:=z+1 H T:=1+2
e=1lVa=3) B=2Va=3)
{z =3}
=(z= "=1)V(z=2A2"=3)

15

References

e Susan Owicki and David Gries: “An Axiomatic Proof Technique for
Parallel Programs”, Acta Informatica, 1976.

e Viktor Vafeiadis: “Modular fine-grained concurrency verification”,
PhD thesis, University of Cambridge, 2007.

e Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, Andrey
Rybalchenko: “Synthesizing Software Verifiers from Proof Rules”,
PLDI 2012.

e Hossein Hojjat, Philipp Riimmer, Pavle Subotic, Wang Yi:
“Horn Clauses for Communicating Timed Systems”’, HCVS 2014.

16

