Introduction to Formal Method
Part 2 : Principle of Model Checking

Fatemeh Ghassemi

Hossein Hojjat
University of Tehran

* Formal Methods

Outline

— Model checking technique »

-
wWhet ¥ Moolel ?

Program verification

‘ Program testing

7N
' ‘ { BUS

_STATION

Model cheé‘dng technique

Let’s have a fun

* How do you model the game to find the
movements for taking the red car out ?

— states : the status of cars

.A e
"

|
[

E|
£,
L
al
]

— Transitions: movements

iaNatafal

— 3
g mimsnuna-mmmm
e i

What we have learned so far

e Qur focus was mainly on programs

(Formal) Software Verification is the act of proving/disproving
that a program is bug-free using mathematics

0

A v

Testing and simulation can only

N

e

v

check a few cases possible behaviors

Software verification checks all

Spectrum of approaches for program
verfication

— — no correctness
Check Finite
_ guarantee
Portion

+ short path to err
(Bounded Model Checking)

—{ Automated j

— — incomplete
Check Finite
) + correctness
Abstraction
guarantee

(Predicate Abstraction)

Software Verification
(Infinite Space)

*{ Semi-Automated]

(Interactive Theorem Prover)

Example on mutual exclusion

Process 1 Process 2

\/

Shared variable y

Loop forever
l,: non-critical section
while y<= 0 wait
L,y :=y-1;
l5: critical section
y=y+l;
End loop

Do processes enter the critical
section simultaneously ?

Example on mutual exclusion (Con.)

Loop forever
l;: non-critical section
while y<= 0 wait
l,:y :=y-1;
l5: critical section
y=y+l;
End loop The parametrized relation for two processes:
R(P,v,I4,1,)

Error : R(1,y,3,3) and R(2,y,3,3)

Prove using your horn clauses

(set-logic HORN) y'=y+1
(declare-fun R (Int Int Int Int) Bool)

(assert (forall ((y Int) (id Int)) (Rid y 1 1)))

; local for thread 1

(assert (forall ((y Int) (12 Int)) (=>(and (>y0) (R1y112)) (R1y 212))))
(assert (forall ((y Int) (yp Int) (12 Int)) (=>(and (=yp (-y 1)) (R1y 212)) (R1yp 312))))

(assert (forall ((y Int) (yp Int) (12 Int)) (=>(and (=yp (+y 1)) (R1y312)) (R1yp112)))) unsat O: FALSE -> 5 1

; local for thread 2

(assert (forall ((y Int) (11 Int)) (=>(and (>y0) (R2ylI11)) (R2vy 112)))) 1: R(z O 3 3) ->2

(assert (forall ((y Int) (yp Int) (11 Int)) (=>(and (=yp (-y 1)) (R2y 11 2)) (R2yp Il 3)))) 2: R(zl 1; 3; 2) ->3

(assert (forall ((y Int) (yp Int) (11 Int)) (=> (and (= yp (+y 1)) (R2y 11 3)) (R 2 yp I1 1)))) 3:R(2,1,3,1)>4,8

; owicki gries 4:R(1,2,2,1)->12

(assert (forall ((y Int) (12 Int)) (=>(and (R1y112)(R2y112)(>y0)) (R2y 212)))) 5 R(l 0 3 3) >6

(assert (forall ((y Int) (yp Int) (12 Int)) (=>(and (R1y 212) (R2y212) (=yp(-y 1)) (R2yp 312)))) ey

(assert (forall ((y Int) (yp Int) (12 Int)) (=>(and (R1y312) (R2y312)(=yp(+y 1)) (R2yp1l2)))) 6: R(l, 1; 2: 3) -> 9/ 7
7:R(2,2,2,2)->8

(assert (forall ((y Int) (11 Int)) (=>(and (R1ylI11)(R2yI11)(>y0)) (R1y 112))) 8: R(z 2 2 1) -> 12 11

(assert (forall ((y Int) (yp Int) (11 Int)) (=>(and (R1yI12)(R2yI12)(=yp(-y 1)) (R1ypll3)))) 9: R(l 22 2) >10

(assert (forall ((y Int) (yp Int) (11 Int)) (=>(and (R1yI13)(R2yI13)(=yp(+y 1)) (R1ypll1l)))) P

. corrctness 10:R(1,2,1,2)->12,11

(assert (forall ((y Int)) (=> (and (R 1y 3 3) (R 2 y 3 3)) false))) 11: R(2, 2,1, 1)

(check-sat) 12: R(l, 2’ 1’ 1)

(get-model)

Some abstraction

 Can we prove its correctness by using a
simpler approach ?

Loop forever :
l,: non-critical section e
await y>0 doy :=y-1; yimy+1f
l5: critical section iy >0: yi=y—1
A Cerie)
crit
End loop

Modeling by transition system

p, (noncrit, P, noncrit,

y=y+1] y=y+1{

y >0: y:=y-1 y >0: y:=y—1
N

noncrit; noncrit, y=1

N,

wa|t1 noncrity y=1 oncrit; waity y=))

T~

(noncrit; crit, y=0)

/

(crltl wait, y_O) (wait; crity y=0)

(crit; noncrity y= 0) (waltl wait, y=1)

10

Example: A Security Protocol

* A public-key authentication protocol
suggested by Needham and Schroeder

* A(lice) and B(ob) try to establish a common
secret key over an insecure channel

— Both should be convinced of each other’s
presence

— An intruder can not get the secret key unless It
breaks the encryption algorithm

11

Needham and Schroeder Protocol

* |tis based on exchange of three messages
between the participating agents.

— <M>. denotes that message M is encrypted using
agents C’s public key.

— Assume the encryption algorithm is secure : only
agent C can decrypt <M>. to learn M.

— All public keys are known to all agents

12

Needham and Schroeder Protocol (Con.)

* N,:arandom number N,, called nonce
indicating that it should be used only once by
any honest agent

Convinces Alice of
the authenticity of
the massage

. “(NA)Ns). B
Alice accepts <N,,Ng> a@ O

the common secret key D) Convinces Bob of
' . > the authenticity of

the massage

Bob also accepts
<N,,Nz> as the common

secret key 13

Analysis : is the protocol secure ?

 Can an intruder find out the secret key ?

e Attackers can intercept messages, store them and
reply them later, initiate runs or respond to runs
initiated by honest agents

— It can only decrypt with his own public key

* The protocol contains a sever flaw , discovered 17
years after its first publish, using model checking!

14

A PROMELA Model

 We need some abstractions :
— A network of only three agents A, B, |
— A and B can only participate in one protocol run

— A act as initiator, B as responder : A and B
generate at most one nonce

— The memory of | is limited to a single message

15

A PROMELA Model (Con.)

¢ mtype= { ok, err, msgl, msg2, msg3, kevyA,
keyB, keyI,agentA, agentB, agentl, nonceA,
nonceB, noncel };

* Encrypted message :

— typedef Crypt { mtype key, infol, info2};
 Network :
— chan network = [0] of { mtype, /* msg# */

mtype, /* receiver */

Crypt };

16

A PROMELA Model (Con.)

mtype partnerAh;
mtype statusA = err;

active proctype Alice() {

mtype pkey, pnonce; e
Crypt data; w

if /* choose a partner for this run */
partnerA = agentB; pkey = keyB;
partnerA = agentl; pkey = kevyI;

fi;

network ! (msgl, partnerA, Crypt{pkey, agentA, nonceA});
network ? (msgZ2, agentA, data);

(data.key == keyA) && (data.infol == nonceAh);

pnonce = data.info2;

network ! (msg3, partnerA, Crypt{pkey, pnonce, 0});

statusA = ok;

A PROMELA Model (Con.)

 Agent |l is modeled nondeterministically: we
describe the actions that are possible at any
given state and let SPIN choose among them

bool knows nonceA, knows nonceB;

active proctype Intruder () {
mtype msg, recpt;
Crypt data, intercepted;
do
:: /*intercept or extract*/..
:: /* Replay or send a message */ ..
Od

18

A PROMELA Model (Con.)

::/*intercept or extract*/..

network ? (msg, , data) ->
if /* perhaps store the message */
intercepted = data;

skip;
fi;
if /* record newly learnt nonces */
(data.key == keyI) ->
if
(data.infol == nonceA) || (data.info2 ==
—-> knows nonceA = true;
else -> skip;
fi;

/* similar for knows nonceB */
else -> skip;
fi;

nonceA)

19

/* Replay or send a message */
if /* choose message type */
msg = msgl;
msg = msg2;
:: msSg = msg3;
fi;
if /* choose recipient */
recpt = agenth;
recpt = agentB;

fi;

if /* replay intercepted message or assemble it
data = 1intercepted;
if

data.infol = agentA;
data.infol = agentB;
data.infol = agentI;

knows nonceA -> data.infol = nonceh;
knows nonceB -> data.infol = nonceB;
:: data.infol = noncel;
fi;

/* similar for data.info2 and data.key */
fi;
network ! (msg, recpt, data);

20

Model Checking the Protocol

If A successfully completes a run with B then
intruder should not have learnt A’s nonce

G(statusA = ok A partnetA = agentB => - knows_nonceA)

G(statusB = ok A partnetB = agentA => - knows_nonceB)

X

21

Model Checking the Protocol (Con.)

Alice:0

lim=sgl, intru

I,alice, nonceh

limsg2,alice

l!mﬂgz,nline,

Intruder:2

,nonceh, no

ralice, nongeh

hoeB

3

neel, noncel

limsg2,alice

|l Imsg3, bob

nceh, noncel

I, noncel, 0

33

63

,nonceB, (

22

Advantage and disadvantage

* Advantage

— We have proved that it is not correct for two agent
early at the design time with minimum labor

* Disadvantage

— |If we prove that something is correct for two
agent, we cannot prove that it is correct for all the
number of agents

— We cannot be sure that the implemented code
conforms to the model

23

Bug Hunting: the Sooner, the Better

50%

40%

30%

20%

10%

0%

Analysis

Conceptual

. Programming Unit Testing | System Testing | Operation
Design
rate of 4.2 defects per
- hour of PERgramming. ff---uh_%
Intrgduced errors (in%) Y

erro

W (in 1,000 US $

12

—10

Time (non-linear)
24

How about more complex protocols?

[Docs] [txt|pdf] [Tracker] [WG] [Email] [Diffl1] [Diff2] [Nits]

Versions: (draft-ietf-manet-dymo) @6 @1 @2 @3

94 95 96 97 98 @9 10 11 12 13 14 15

16
Mobile Ad hoc Networks Working Group C. Perkins
Internet-Draft Futurewei
Intended status: Standards Track S. Ratliff
Expires: January 23, 2016 Idirect

J. Dowdell

Airbus Defence and Space

L. Steenbrink

HAW Hamburg, Dept. Informatik
V. Mercieca

Airbus Defence and Space
July 22, 2015

Ad Hoc On-demand Distance Vector (AODVv2) Routing
draft-ietf-manet-aodvv2-11

Abstract

The revised Ad Hoc On-demand Distance Vector (AODVv2) routing
protocol is intended for use by mobile routers in wireless, multihop
networks. AODVv2 determines unicast routes among AODVv2 routers
within the network in an on-demand fashion, offering rapid
convergence in dynamic topologies.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

25

Formal Methods

 Formal methods are the applied mathematics
for modelling and analyzing ICT systems

* Formal methods offer a large potential for

— Obtaining an early integration of verification in the

design process

— Providing more effective verification technique
(higher code coverage)

— Reducing the verification time

26

Milestones in Formal Verification

@ Mathematical program correctness (Turing, 1949)

@ Syntax-based technique for sequential programs (Hoare, 1969)

e for a given input, does a computer program generate the
correct output?
e based on compositional proof rules expressed in predicate logic

@ Syntax-based technique for concurrent programs (Pnueli, 1977)

e handles properties referring to states during the computation
e based on proof rules expressed in temporal logic

@ Automated verification of concurrent programs

e model-based instead of proof-rule based approach
o does the concurrent program satisfy a given (logical) property?

27

What are the counterparts of model

checking technigue ?

* The model checking question: does the system

under the consideration V€ r|f|es the
given property ?
— A System : Model ?

— A Property
— A checker

28

Model Checking Technique

* Model checking is an automated technique
that, given a finite-state model of a system
and a formal property, systematically checks
whether this property holds for (a given state

in) that model.

29

Model Checking Technique (Con.)

Formalizing

property
specification

@ "*not biased towards the

Regular properties,

Y

CTL,LTL Modeling

violated +
counterexample

insufficient

memory

— 7| Model Checking [+

most probable scenarios™”

LTS, PGS, Actor, TA

Simulation error

30

0!%5-’71

* ﬂs

Principles of Model Checking
Christel Baier and Joost-Pieter Katoen

Transition Systems — Formal Det.

Definition 2.1. Transition System (TS)
A transition system TS is a tuple (S, Act,—.I. AP, L) where

e S 1s a set of states,
e Act 1s a set of actions,
e — C S x Act xS 18 a transition relation,

e [T 5 1s a set of mmitial states,

e AP 1s a set of atomic propositions, and pay\
get_soda —

get_beer
o [:S 24454 labeling function.
insert_coin

{sodm} - @Efﬁf‘) "(E?EET‘ l

Program Graphs — Formal Def.

Definition 2.13. Program Graph (PQG)

A program graph PG over set Var of typed variables is a tuple (Loc, Act, Effect, —, Locy, gp)

where

Loc is a set of locations and Act 1s a set of actions
Effect : Act x Eval(Var) — Eval(Var) is the effect
— C Loc x Cond(Var) x Act x Loc is the condit
Locy € Loc 18 a set of initial locations,

go € Cond(Var) is the initial condition.

From Program Graph to TS

PG, ||| PG :
N

----sso® [nonerity , noneritg)+
(. - N

yi=y+1 1y = y+1

s "y
L (walty, noncrits) _‘_,’ {noncrity , waitg)]
T — . - T

k.

y>0: y = y+-1_ql.?""--\\‘ y>0: i
: yi=y—1 7 tay : ‘::’ e Y= y—1 ?\
{crity , nonerity) J [(waity, waits) [{nonecrity, crity))

A

x

‘i 3 "'J"‘

[{crity, waita)] :

[(waity, crita)]

yi=ytl

@11 , W2, yzli\)
o
((n1, e2, -yzoj:ﬁ

\{01 ,wa, y=0£=/ - _""le, ca, y:OE:)

Lineavr

Describing Properties‘WI‘e/mporaI Logic

[(ready — (ready U delivered))

* Globally, If A successfully completes a run with
B then intruder should not have learnt the
secret key.

r 0000
pU—q (O~~~

There are other types of logics: CTL, Hennesy-Milner, ...

Tool Support

:i:l'll C:/appfuppaal-dev/rLxml - UPPAAL
Eile Edit View Tools Options Help

LaBEB92C AaqR@-e
m Simulator | yerifer

[Drag out]:

theWWaiter
Enabled Transitions

theChef

order == falze c2
-©

arder == {rue

theWaiter “

order == false W8 i notify
& &

waiting ;= tue "'E-’ waiting = false ©) va

W

order = false ?

order ==true

[Mext ” Reset]

Simulation Trace

A w

(w2, c1) - theWaiter theChef
theChef

(w2, c2)

theChef

(w2, c3)

notify: theChef —= theWaiter
(w3, c)

theWaiter

(w1, c4)

theWaiter

(w4, c4)

theWaiter

(w5, c4) e

Trace File:

order =10
waiting =0

m

