
Introduction to Formal Method
Part 2 : Principle of Model Checking

Fatemeh Ghassemi
Hossein Hojjat
University of Tehran

Outline

• Formal Methods

– Model checking technique

2

Program verification

Program testing

Model checking technique

Model ?

Let’s have a fun

• How do you model the game to find the
movements for taking the red car out ?

– states : the status of cars

– Transitions: movements

3

What we have learned so far

• Our focus was mainly on programs

4

Spectrum of approaches for program
verfication

5

Example on mutual exclusion

6

Process 1 Process 2

Shared variable y

Loop forever
l1: non-critical section

while y<= 0 wait
l2: y := y-1;
l3: critical section
y = y+1 ;

End loop

Do processes enter the critical
section simultaneously ?

Example on mutual exclusion (Con.)

7

Loop forever
l1: non-critical section

while y<= 0 wait
l2: y := y-1;
l3: critical section
y = y+1 ;

End loop

1 2
y>0

y<=0 y=y

3
y=y-1

y=y+1

The parametrized relation for two processes:
R(Pi,y,l1,l2)

Error : R(1,y,3,3) and R(2,y,3,3)

Prove using your horn clauses

(set-logic HORN)

(declare-fun R (Int Int Int Int) Bool)

(assert (forall ((y Int) (id Int)) (R id y 1 1)))

; local for thread 1

(assert (forall ((y Int) (l2 Int)) (=> (and (> y 0) (R 1 y 1 l2)) (R 1 y 2 l2))))

(assert (forall ((y Int) (yp Int) (l2 Int)) (=> (and (= yp (- y 1)) (R 1 y 2 l2)) (R 1 yp 3 l2))))

(assert (forall ((y Int) (yp Int) (l2 Int)) (=> (and (= yp (+ y 1)) (R 1 y 3 l2)) (R 1 yp 1 l2))))

; local for thread 2

(assert (forall ((y Int) (l1 Int)) (=> (and (> y 0) (R 2 y l1 1)) (R 2 y l1 2))))

(assert (forall ((y Int) (yp Int) (l1 Int)) (=> (and (= yp (- y 1)) (R 2 y l1 2)) (R 2 yp l1 3))))

(assert (forall ((y Int) (yp Int) (l1 Int)) (=> (and (= yp (+ y 1)) (R 2 y l1 3)) (R 2 yp l1 1))))

; owicki gries

(assert (forall ((y Int) (l2 Int)) (=> (and (R 1 y 1 l2) (R 2 y 1 l2) (> y 0)) (R 2 y 2 l2))))

(assert (forall ((y Int) (yp Int) (l2 Int)) (=> (and (R 1 y 2 l2) (R 2 y 2 l2) (= yp (- y 1))) (R 2 yp 3 l2))))

(assert (forall ((y Int) (yp Int) (l2 Int)) (=> (and (R 1 y 3 l2) (R 2 y 3 l2) (= yp (+ y 1))) (R 2 yp 1 l2))))

(assert (forall ((y Int) (l1 Int)) (=> (and (R 1 y l1 1) (R 2 y l1 1) (> y 0)) (R 1 y l1 2))))

(assert (forall ((y Int) (yp Int) (l1 Int)) (=> (and (R 1 y l1 2) (R 2 y l1 2) (= yp (- y 1))) (R 1 yp l1 3))))

(assert (forall ((y Int) (yp Int) (l1 Int)) (=> (and (R 1 y l1 3) (R 2 y l1 3) (= yp (+ y 1))) (R 1 yp l1 1))))

; corrctness

(assert (forall ((y Int)) (=> (and (R 1 y 3 3) (R 2 y 3 3)) false)))

(check-sat)

(get-model)
8

1 2
y>0

3
y=y-1

y=y+1

unsat 0: FALSE -> 5, 1
1: R(2, 0, 3, 3) -> 2
2: R(2, 1, 3, 2) -> 3
3: R(2, 1, 3, 1) -> 4, 8
4: R(1, 2, 2, 1) -> 12
5: R(1, 0, 3, 3) -> 6
6: R(1, 1, 2, 3) -> 9, 7
7: R(2, 2, 2, 2) -> 8
8: R(2, 2, 2, 1) -> 12, 11
9: R(1, 2, 2, 2) -> 10
10: R(1, 2, 1, 2) -> 12, 11
11: R(2, 2, 1, 1)
12: R(1, 2, 1, 1)

Some abstraction

• Can we prove its correctness by using a
simpler approach ?

9

Loop forever
l1: non-critical section

await y>0 do y := y-1;
l3: critical section
y = y+1 ;

End loop

Modeling by transition system

10

Example: A Security Protocol

• A public-key authentication protocol
suggested by Needham and Schroeder

• A(lice) and B(ob) try to establish a common
secret key over an insecure channel
– Both should be convinced of each other’s

presence

– An intruder can not get the secret key unless It
breaks the encryption algorithm

11

Needham and Schroeder Protocol

• It is based on exchange of three messages
between the participating agents.

– <M>C denotes that message M is encrypted using
agents C’s public key.

– Assume the encryption algorithm is secure : only
agent C can decrypt <M>C to learn M.

– All public keys are known to all agents

12

Needham and Schroeder Protocol (Con.)

• NA : a random number NA, called nonce
indicating that it should be used only once by
any honest agent

13

Convinces Alice of
the authenticity of
the massage

Convinces Bob of
the authenticity of
the massage

Alice accepts <NA,NB> as
the common secret key

Bob also accepts
<NA,NB> as the common
secret key

Analysis : is the protocol secure ?

• Can an intruder find out the secret key ?

• Attackers can intercept messages, store them and
reply them later, initiate runs or respond to runs
initiated by honest agents
– It can only decrypt with his own public key

• The protocol contains a sever flaw , discovered 17
years after its first publish, using model checking!

14

A PROMELA Model

• We need some abstractions :

– A network of only three agents A, B, I

– A and B can only participate in one protocol run

– A act as initiator, B as responder : A and B
generate at most one nonce

– The memory of I is limited to a single message

15

A PROMELA Model (Con.)

• mtype = { ok, err, msg1, msg2, msg3, keyA,

keyB, keyI,agentA, agentB, agentI, nonceA,

nonceB, nonceI };

• Encrypted message :
– typedef Crypt { mtype key, info1, info2};

• Network :
– chan network = [0] of { mtype, /* msg# */

mtype, /* receiver */

Crypt };

16

A PROMELA Model (Con.)

17

mtype partnerA;

mtype statusA = err;

active proctype Alice() {

mtype pkey, pnonce;

Crypt data;

if /* choose a partner for this run */

:: partnerA = agentB; pkey = keyB;

:: partnerA = agentI; pkey = keyI;

fi;

network ! (msg1, partnerA, Crypt{pkey, agentA, nonceA});

network ? (msg2, agentA, data);

(data.key == keyA) && (data.info1 == nonceA);

pnonce = data.info2;

network ! (msg3, partnerA, Crypt{pkey, pnonce, 0});

statusA = ok;

}

A PROMELA Model (Con.)

• Agent I is modeled nondeterministically: we
describe the actions that are possible at any
given state and let SPIN choose among them

18

bool knows_nonceA, knows_nonceB;

active proctype Intruder() {

mtype msg, recpt;

Crypt data, intercepted;

do

:: /*intercept or extract*/…

:: /* Replay or send a message */ …

Od

}

19

A PROMELA Model (Con.)

::/*intercept or extract*/…

network ? (msg, _, data) ->

if /* perhaps store the message */

:: intercepted = data;

:: skip;

fi;

if /* record newly learnt nonces */

:: (data.key == keyI) ->

if

:: (data.info1 == nonceA) || (data.info2 == nonceA)

-> knows_nonceA = true;

:: else -> skip;

fi;

/* similar for knows_nonceB */

:: else -> skip;

fi;

:: /* Replay or send a message */

if /* choose message type */

:: msg = msg1;

:: msg = msg2;

:: msg = msg3;

fi;

if /* choose recipient */

:: recpt = agentA;

:: recpt = agentB;

fi;

if /* replay intercepted message or assemble it

:: data = intercepted;

:: if

:: data.info1 = agentA;

:: data.info1 = agentB;

:: data.info1 = agentI;

:: knows_nonceA -> data.info1 = nonceA;

:: knows_nonceB -> data.info1 = nonceB;

:: data.info1 = nonceI;

fi;

/* similar for data.info2 and data.key */

fi;

network ! (msg, recpt, data);
20

Model Checking the Protocol

If A successfully completes a run with B then
intruder should not have learnt A’s nonce

21

G(statusA = ok ˄ partnetA = agentB => ¬ knows_nonceA)

G(statusB = ok ˄ partnetB = agentA => ¬ knows_nonceB)



Model Checking the Protocol (Con.)

22

Advantage and disadvantage

• Advantage

– We have proved that it is not correct for two agent
early at the design time with minimum labor

• Disadvantage

– If we prove that something is correct for two
agent, we cannot prove that it is correct for all the
number of agents

– We cannot be sure that the implemented code
conforms to the model

23

Bug Hunting: the Sooner, the Better

24

rate of 4.2 defects per
hour of programming.

How about more complex protocols?

25

Formal Methods

• Formal methods are the applied mathematics
for modelling and analyzing ICT systems

• Formal methods offer a large potential for

– Obtaining an early integration of verification in the
design process

– Providing more effective verification technique
(higher code coverage)

– Reducing the verification time

26

Milestones in Formal Verification

27

What are the counterparts of model
checking technique ?

• The model checking question: does the system

under the consideration verifies the

given property ?

– A System : Model ?

– A Property

– A checker

28

Model Checking Technique

• Model checking is an automated technique
that, given a finite-state model of a system
and a formal property, systematically checks
whether this property holds for (a given state
in) that model.

29

Model Checking Technique (Con.)

30

Regular properties,
CTL,LTL

LTS, PGS, Actor, TA

Transition Systems – Formal Def.

Program Graphs – Formal Def.

From Program Graph to TS

Describing Properties in Temporal Logic

 (ready  (ready U delivered))

• Globally, If A successfully completes a run with
B then intruder should not have learnt the
secret key.

 p

p U q

There are other types of logics: CTL, Hennesy-Milner, …

Tool Support

