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Outline

• Formal Methods 

– Model checking technique
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Program verification

Program testing

Model checking technique

Model ?



Let’s have a fun

• How do you model the game to find the 
movements for taking the red car out ?

– states : the status of cars

– Transitions: movements
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What we have learned so far

• Our focus was mainly on programs
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Spectrum of approaches for program 
verfication
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Example on mutual exclusion
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Process 1 Process 2

Shared variable y

Loop forever
l1: non-critical section

while y<= 0 wait 
l2: y := y-1;
l3: critical section
y = y+1 ;

End loop

Do processes enter the critical 
section simultaneously ? 



Example on mutual exclusion (Con.)
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Loop forever
l1: non-critical section

while y<= 0 wait 
l2: y := y-1;
l3: critical section
y = y+1 ;

End loop

1 2
y>0

y<=0 y=y

3
y=y-1

y=y+1

The parametrized relation for  two processes: 
R(Pi,y,l1,l2)

Error :   R(1,y,3,3) and R(2,y,3,3) 



Prove using your horn clauses

(set-logic HORN)

(declare-fun R (Int Int Int Int) Bool)

(assert (forall ((y Int) (id Int)) (R id y 1 1)))

; local for thread 1

(assert (forall ((y Int) (l2 Int))          (=> (and (> y 0) (R 1 y 1 l2))        (R 1 y  2 l2))))

(assert (forall ((y Int) (yp Int) (l2 Int)) (=> (and (= yp (- y 1)) (R 1 y 2 l2)) (R 1 yp 3 l2))))

(assert (forall ((y Int) (yp Int) (l2 Int)) (=> (and (= yp (+ y 1)) (R 1 y 3 l2)) (R 1 yp 1 l2))))

; local for thread 2

(assert (forall ((y Int) (l1 Int))          (=> (and (> y 0) (R 2 y l1 1))        (R 2 y  l1 2))))

(assert (forall ((y Int) (yp Int) (l1 Int)) (=> (and (= yp (- y 1)) (R 2 y l1 2)) (R 2 yp l1 3))))

(assert (forall ((y Int) (yp Int) (l1 Int)) (=> (and (= yp (+ y 1)) (R 2 y l1 3)) (R 2 yp l1 1))))

; owicki gries

(assert (forall ((y Int) (l2 Int))          (=> (and (R 1 y 1 l2) (R 2 y 1 l2) (> y 0))        (R 2 y  2 l2))))

(assert (forall ((y Int) (yp Int) (l2 Int)) (=> (and (R 1 y 2 l2) (R 2 y 2 l2) (= yp (- y 1))) (R 2 yp 3 l2))))

(assert (forall ((y Int) (yp Int) (l2 Int)) (=> (and (R 1 y 3 l2) (R 2 y 3 l2) (= yp (+ y 1))) (R 2 yp 1 l2))))

(assert (forall ((y Int) (l1 Int))          (=> (and (R 1 y l1 1) (R 2 y l1 1) (> y 0))        (R 1 y  l1 2))))

(assert (forall ((y Int) (yp Int) (l1 Int)) (=> (and (R 1 y l1 2) (R 2 y l1 2) (= yp (- y 1))) (R 1 yp l1 3))))

(assert (forall ((y Int) (yp Int) (l1 Int)) (=> (and (R 1 y l1 3) (R 2 y l1 3) (= yp (+ y 1))) (R 1 yp l1 1))))

; corrctness

(assert (forall ((y Int)) (=> (and (R 1 y 3 3) (R 2 y 3 3)) false)))

(check-sat)

(get-model)
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1 2
y>0

3
y=y-1

y=y+1

unsat 0: FALSE -> 5, 1 
1: R(2, 0, 3, 3) -> 2 
2: R(2, 1, 3, 2) -> 3
3: R(2, 1, 3, 1) -> 4, 8 
4: R(1, 2, 2, 1) -> 12 
5: R(1, 0, 3, 3) -> 6 
6: R(1, 1, 2, 3) -> 9, 7 
7: R(2, 2, 2, 2) -> 8 
8: R(2, 2, 2, 1) -> 12, 11 
9: R(1, 2, 2, 2) -> 10 
10: R(1, 2, 1, 2) -> 12, 11 
11: R(2, 2, 1, 1) 
12: R(1, 2, 1, 1)



Some abstraction

• Can we prove its correctness by using a 
simpler approach ? 
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Loop forever
l1: non-critical section

await y>0 do y := y-1;
l3: critical section
y = y+1 ;

End loop



Modeling by transition system
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Example: A Security Protocol

• A public-key authentication protocol 
suggested by Needham and Schroeder

• A(lice) and B(ob) try to establish a common
secret key over an insecure channel
– Both should be convinced of each other’s 

presence

– An intruder can not get the secret key unless It 
breaks the encryption algorithm
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Needham and Schroeder Protocol

• It is based on exchange of three messages 
between the participating agents.

– <M>C denotes that message M is encrypted using 
agents C’s public key. 

– Assume the encryption algorithm is secure : only 
agent C can decrypt <M>C to learn M.

– All public keys are known to all agents
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Needham and Schroeder Protocol (Con.)

• NA : a random number NA, called nonce
indicating that  it should be used only once by 
any honest agent
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Convinces Alice of 
the authenticity of 
the massage  

Convinces Bob of 
the authenticity of 
the massage  

Alice accepts <NA,NB> as 
the common secret key

Bob also accepts 
<NA,NB> as the common 
secret key



Analysis : is the protocol secure ?

• Can an intruder find out the secret key ? 

• Attackers can intercept messages, store them and 
reply them later, initiate runs or respond to runs 
initiated by honest agents
– It can only decrypt with his own public key

• The protocol contains a sever flaw , discovered 17 
years after its first publish, using model checking!
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A PROMELA Model

• We need some abstractions : 

– A network of only three agents A, B, I

– A and B can only participate in one protocol run

– A act as initiator, B as responder : A and B 
generate at most one nonce

– The memory of I is limited to a single message
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A PROMELA Model (Con.)

• mtype = { ok, err, msg1, msg2, msg3, keyA, 

keyB, keyI,agentA, agentB, agentI, nonceA, 

nonceB, nonceI };

• Encrypted message : 
– typedef Crypt { mtype key, info1, info2};

• Network :
– chan network = [0] of { mtype, /* msg# */

mtype, /* receiver */

Crypt };
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A PROMELA Model (Con.)
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mtype partnerA;

mtype statusA = err;

active proctype Alice() {

mtype pkey, pnonce;

Crypt data;

if /* choose a partner for this run */

:: partnerA = agentB; pkey = keyB;

:: partnerA = agentI; pkey = keyI;

fi;

network ! (msg1, partnerA, Crypt{pkey, agentA, nonceA});

network ? (msg2, agentA, data);

(data.key == keyA) && (data.info1 == nonceA);

pnonce = data.info2;

network ! (msg3, partnerA, Crypt{pkey, pnonce, 0});

statusA = ok;

}



A PROMELA Model (Con.)

• Agent I is modeled nondeterministically: we 
describe the actions that are possible at any 
given state and let SPIN choose among them
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bool knows_nonceA, knows_nonceB;

active proctype Intruder() {

mtype msg, recpt;

Crypt data, intercepted;

do

:: /*intercept or extract*/…

:: /* Replay or send a message */ …

Od

}
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A PROMELA Model (Con.)

::/*intercept or extract*/…

network ? (msg, _, data) ->

if /* perhaps store the message */

:: intercepted = data;

:: skip;

fi;

if /* record newly learnt nonces */

:: (data.key == keyI) ->

if

:: (data.info1 == nonceA) || (data.info2 == nonceA)

-> knows_nonceA = true;

:: else -> skip;

fi;

/* similar for knows_nonceB */

:: else -> skip;

fi;



:: /* Replay or send a message */

if /* choose message type */

:: msg = msg1;

:: msg = msg2;

:: msg = msg3;

fi;

if /* choose recipient */

:: recpt = agentA;

:: recpt = agentB;

fi;

if /* replay intercepted message or assemble it 

:: data = intercepted;

:: if

:: data.info1 = agentA;

:: data.info1 = agentB;

:: data.info1 = agentI;

:: knows_nonceA -> data.info1 = nonceA;

:: knows_nonceB -> data.info1 = nonceB;

:: data.info1 = nonceI;

fi;

/* similar for data.info2 and data.key */

fi;

network ! (msg, recpt, data);
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Model Checking the Protocol

If A successfully completes a run with B then 
intruder should not have learnt A’s nonce 
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G( statusA = ok ˄ partnetA = agentB => ¬ knows_nonceA )

G( statusB = ok ˄ partnetB = agentA => ¬ knows_nonceB )





Model Checking the Protocol (Con.)
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Advantage and disadvantage

• Advantage

– We have proved that it is not correct for two agent 
early at the design time with minimum labor 

• Disadvantage

– If we prove that something is correct for two 
agent, we cannot prove that it is correct for all the 
number of agents 

– We cannot be sure that the implemented code 
conforms to the model
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Bug Hunting: the Sooner, the Better
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rate of 4.2 defects per
hour of programming.



How about more complex protocols?
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Formal Methods

• Formal methods are the applied mathematics 
for modelling and analyzing ICT systems

• Formal methods offer a large potential for

– Obtaining an early integration of verification in the 
design process

– Providing more effective verification technique 
(higher code coverage)

– Reducing the verification time
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Milestones in Formal Verification
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What are the counterparts of model 
checking technique ? 

• The model checking question: does the system 

under the consideration verifies the 

given property ? 

– A System : Model ? 

– A Property 

– A checker
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Model Checking Technique

• Model checking is an automated technique
that, given a finite-state model of a system
and a formal property, systematically checks
whether this property holds for (a given state
in) that model.

29



Model Checking Technique (Con.)
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Regular properties,
CTL,LTL

LTS, PGS, Actor, TA





Transition Systems – Formal Def.



Program Graphs – Formal Def.



From Program Graph to TS



Describing Properties in Temporal Logic

 (ready  (ready U delivered))

• Globally, If A successfully completes a run with 
B then intruder should not have learnt the 
secret key.

 p

p U q

There are other types of logics: CTL, Hennesy-Milner, …



Tool Support


