Model Checking with Spin

Fatemeh Ghassemi

Hossein Hojjat
University of Tehran

A big picture

Promela Assertions and LTL properties
syntactic description requirements
Of P]_, oo oy Pn
SOS-rules specification spec
/
4 —)
transition system 7

N\

model checker
does T satisfy spec ?

N e ~ Y,
S N\

yes no 4+ error indication

- -
Verifying
Multi-threaded
software
with Spin

Spin is a popular open-source software verification tool, used by thousands of people worldwide. The tool
can be used for the formal verification of multi-threaded software applications. The tool was developed at
Bell Labs in the Unix group of the Computing Sciences Research Center, starting in 1980. The software has
been available freely since 1991, and continues to evolve to keep pace with new developments. In April
2002 the tool was awarded the ACM System Software Award. [read more]

discover learn use community
« what is spin? « tutorials « installation « forum
« success stories « books e man pages « symposia
« examples « papers « options « support
« roots « model extraction « releases « projects

« exercises

Open Source: Starting with Version 6.4.5 from January 2016, the Spin sources are available under the standard
BSD 3-Clause open source license. Spin is now also part of the latest stable release of Debian Linux, and has made

it into the 16.10+ distributions of Ubuntu. The current Spin version is 6.4.7 (August 2017).

Visit at http://spinroot.com/spin/whatispin.html ,

foundations

1936 1950 1968 1975 1980 1989 1995 2000 2004 2016
Fortran C C++
Algol Algol68
1936: first theory on 1960: early work on
computability / w-automatatheory,
Turing machines
1940-50: first computers 1968: two terms introduced:

software crisis
1955: early work on tense software engineering
logics (predecessors of LTL) |

-

Taken from lecture 4 of Logic Model Checking for Formal Software Verification course at
https://piazza.com/caltech/winter2017/cs118/resources

foundations

1936 1950 1968 1975 1980 1989 1995 2000 2004 2016
Pan C++ Spiny ===
Algol68 LTL CTL
1936: first theory on 1960: early work on 1975: Edsger Dijkstra’s paper 1989: Spin 1.0 released publicly
com|;utability e.g w-au.tomata theory, on Guarded Command Languages verification of w-regular properties
Turing machines 1978: Tony Hoare’s paperon 1993: BDDs and the
Communicating Sequential Processes SMV'modeI checker
1977: Amir Pnueliintroduces (Ken McMillan, CMU)
1955: early work on tense linear temporallogic for 1995: 2
: : partialorder
logics (predecessors of LTL) distributed system verification Feduction atkiad io Boin:
1976-1979: first experiments LTL conversion addedto Spin.
with reachability analyzers (Doron Peled)

(e.g., Jan Hajek: ‘Approver’)

. .] 2001: supportfor
the two most used logic model checking systems: 1980: first version embedded C code in

Spin: explicit state LTL model checking ~ of Spin: ‘Pan’ (Bell Labs) Spin version 4.0
based on automata theoretic verification ;
targeting concurrent software verification

SMV: symbolic CTL model checking I'model checking’
targeting hardware circuit verification fand the logic CTL*

(there are many other types of model checkers)

Taken from lecture 4 of Logic Model Checking for Formal Software Verification course at
https://piazza.com/caltech/winter2017/cs118/resources

Outline

* |Introduction to Promela and Spin

— Lecture 3 of Logic Model Checking for Formal
Software Verification course at Caltech
https://piazza.com/caltech/winter2017/cs118/res
ources

e Converting (a subset) of Promela to program
graphs
— SOS rules

Guarded command language

* Promelais based on guarded command
language, provided by Dijkstra
— a high-level modeling language that contains

features of and
nondeterministic choice

guarded command g = stmt <«—|enabled if g is true

g : guard, i.e., Boolean condition
on the program variables

stmt : statement

Guarded Command Language (GCL)

guarded command g = stmt <«—|enabled if g is true

repetitive command /loop:

DO :: g = stmt OD «| WHILE g DO stmt OD

conditional command:

IF == g = stmt IF g THEN stmt;

g = stmb — ELSE stmt,
FI FI

symbol :: stands for the nondeterministic choice
between enabled guarded commands

Lecture 14 of the course 137/6%
8

Guarded command language (Con.)

* Semantics of CGL is given in terms of program
graph Example : a program graph to an LTS

CGL program

l ?

Program graph

— &

l €£>£’/\17

(€,n) — (¢, Effect(n, o))

Transition systems

Example: Beverage Machine

— Assume n=[#coke=1, #sprite=0]

A\ (oknds \ jss(w\@@) E

*}y\w LI’Q/F‘-M
rex — Con

+ s?r\J&?TZS‘_
W . SFA{"L

|, -- #coke>0:get_coke ---> |, + n ||- #coke>0

<l;,m> --- get_coke --------- > <|,,[#coke=0, #sprite=0]>
10

Syntax of Promela

* A subpart of the syntax is given by the
grammar below:

stmt = skip | z:=expr | c?x | clexpr |
stmty ; stmty | atomic{assignments} |
if g =stmt; ... g,=stmt, fi |

do :¢g; =stmt; ... :g,= stmt, do

11

Semantics of Promela

* For x=expr where xeVar

: skip

skip --- true:id --- > exit

: expr

x=expr ---true: assign(x,expr) --- > exit

12

Semantics of Promela (Con.)

* For send and receive on channels

. rec

C?X--- C?X --- > exit

: snd

clexpr---clexpr --- > exit

13

Semantics of Promela (Con.)

* For atomic region

: atomic

atomic{x,=expr,;...x,,=expr}--true:a, --- > exit

where a,=Effect(assign(x,expr:),Effect(a._,n))

14

Semantics of Promela(Con.)

* For sequential composition stmt,;stmt,

stmt, --- g : @ ---> stmt, #exit

: Seq,
stmt, ;stmt, --- g:a ---> stmt,’;stmt,

stmt, --- g : a ---> exit

: Seq,

15

Semantics of Promela(Con.)

i FOr if-Statement Test-and-Set semantics

stmt, --- g : a ---> stmt’

i
if :: g, = stmt, ... :: g, = stmt_ fi --- gag;:a ---> stmt’

— Note : the semantics of IF is given in terms of
semantics of its elements Stm,, ..., Stm_, i.e., its
structure

16

Semantics of Promela (Con.)

 Example: derive its program graph

1 active proctype loop()

2 { bytea,b;

3

if
ma>l->b=2%3;
:» b =2%a; skip
fi;

0O N O U1 b~

17

Semantics of Promela (Con.)

¢ FOr dO-Statement Test-and-Set semantics

stmt, --- g : a ---> stmt’#exit

: DO,
do:: g, = stmt, ... :: g, = stmt_ od --- gng:a --->
stmt’; do :: g, = stmt, ... :: g, = stmt_ od

: DO,
do:: g, = stmt, ... ;1 g, = stmt, od --- =g,A...A—g,, ---> exit
stmt, --- g 1 a ---> exit DO,
do: g, = stmt, ... ;1 g, = stmt od --- gag;:a --—->
do::g, = stmt, ... :: g, = stmt_ od

18

Semantics of Promela (Con.)

 Example: derive its program graph

1 active proctype loop()
2 { bytea,b;

3

4 do

5 ra=(a+1)%3;

6 if

7 ma>1->b=2%a;
8 :: b =2%3; skip

9 fi;

10 b-

11 od

19

Semantics of Promela (Con.)

e For if-statement Two-step semantics

if :: g, = stmt, ... :: g, = stmt_ fi--- g.:id ---> stmt,

. |F

20

Semantics of Promela (Con.)

° FOr dO_Statement Two-step semantics

: DO
do: g, = stmt, ... i1 g, = stmt od --- g;:id --->
stmt; do :: g, = stmt, ... :: g, = stmt, od

21

