
Introduction to Formal Methods

Lecture 26

Software Model Checking

Hossein Hojjat & Fatemeh Ghassemi

December 25, 2018

Model Checking (so far)

The promise of model checking

• Exhaustive exploration of the state space of a program

• Push-button veri�cation of arbitrary temporal logic formulas

• Dramatic performance improvements from state-space reduction

techniques (e.g. partial order reduction)

But

• It only works for programs with �nite state space

1

Abstraction to the Rescue

• We can abstract the in�nite state space into a �nite one

• Every abstract state corresponds to an in�nite set of states

2

void main (){
int x = ∗;(`1)

while (∗){
(`2) if(x>0)
(`3) x = 2∗x;

else
(`4) x = x−1;
(`5) x = abs (∗)/ x;

}
}

(`1,+)

(`2,+)

(`3,+)

(`5,+)

(`4, 0)

(`2, 0)

(`1, 0)

(`5,−)

(`4,−)

(`2,−)

(`1,−)

Abstraction to the Rescue

• Abstractions usually have to be tailored to the program and property

of interest

• Imprecision on the abstraction can lead to spurious paths

2

void main (){
int x = ∗;(`1)

while (∗){
(`2) if(x>1)
(`3) x = 2∗x;

else
(`4) x = x−2;
(`5) x = abs (∗)/ x;

}
}

(`1,+)

(`2,+)

(`3,+)

(`5,+)

(`4, 0)

(`2, 0)

(`1, 0)

(`5,−)

(`4,−)

(`2,−)

(`1,−)

(`5, 0) error(`4,+)

Spurious Path under Microscope

• Abstractions usually have to be tailored to the program and property

of interest

• Imprecision on the abstraction can lead to spurious paths

2

void main (){
int x = ∗;(`1)

while (∗){
(`2) if(x>1)
(`3) x = 2∗x;

else
(`4) x = x−2;
(`5) x = abs (∗)/ x;

}
}

(`1,+)

(`2,+)

(`3,+)

(`5,+)

(`4, 0)

(`2, 0)

(`1, 0)

(`5,−)

(`4,−)

(`2,−)

(`1,−)

(`5, 0) error
x > 2

x = 1 x = 2

`4 :

Abstraction Re�nement

• We need a simple way to come up with abstractions

• Our abstractions must be �exible

• We need to be able to re�ne them on demand

• This is how we identify spurious paths and eliminate them

3

Predicate Abstraction

• Software has too many state variables (practically in�nite space)

• Predicate Abstraction: Only keep track of predicates on data

P = {p1(~x), · · · , pn(~x)}
Graf and Saïdi: �Construction of abstract state graphs with PVS�, CAV 1997

• Transition function can be computed by a theorem prover

• Big idea: We can re�ne the abstraction by introducing more predicates!

4

Abstraction

Example

• Let P = {x > y, x = 2}
• What is the abstraction after executing the following piece of code?

{true}

int x,y;
x = y + 1;

• ∀x, y, x′, y′ ∈ Z.(x′ = y + 1) ∧ (y′ = y)→ (x′ > y′) (valid)

• ∀x, y, x′, y′ ∈ Z.(x′ = y + 1) ∧ (y′ = y)→ (x′ = 2) (not valid)

The abstraction is {(x > y)}

5

Abstraction

Example

• Let P = {x < 2}
• What is the abstraction after executing the following piece of code?

{x = 2}

if (x > 2) x = x − 1;

• ∀x, x′.(x = 2) ∧ (x > 2) ∧ (x′ = x− 1)→ (x′ < 2)

≡ ∀x, x′.false→ (x′ < 2) (valid)

• The abstraction in this case :{(x < 2)}

6

Abstract Reachability Tree

• Abstract state (l, ψ)

• l: location in control �ow graph

• ψ: predicate abstraction

• Abstract reachability tree (ART) is a tree G = (VA,→, I)

• VA is a set of abstract states

• →⊆ VA × VA is the transition relation

• Let c be the command between li and lj in the CFG

• ((li, ψ), (lj , φ)) ∈→ i� ∀~v, ~v′.ψ(~v) ∧ c(~v, ~v′)→ φ(~v′)

• I ∈ VA is the initial abstract state

• (li, ψ) is leaf if there exists another node (lj , φ) in the tree such that

|= ψ → φ

7

ART Example

P = {⊥, (x <= 0), (x+y <= 0), (x−y <= 0)}

Prove G(pc 6= `5) :

`1 : x = 0;

`2 : y = 0;

if (x > 0) {

`3 : x = -x

`4 : y = -y

} else {

if (y > 0) y = -y

}

if(x + y <= 0)

`5 : ERR

else

// ...

8

Control Flow Graph:

1

2

3

4 5

6 7

8

ERR 9

x = 0

y = 0

[¬(x > 0)][x > 0]

x = −x [y > 0]

[¬(y > 0)]y = −y y = −y

[(x+ y ≤ 0)][¬(x+ y ≤ 0)]

ART Example

P = {⊥, (x <= 0), (x+y <= 0), (x−y <= 0)}

8

1

2

3

4 5

6 7

8

ERR 9

x = 0

y = 0

[¬(x > 0)][x > 0]

x = −x [y > 0]

[¬(y > 0)]y = −y y = −y

[(x+ y ≤ 0)][¬(x+ y ≤ 0)]

>

x ≤ 0

x = 0

ART Example

P = {⊥, (x <= 0), (x+y <= 0), (x−y <= 0)}

8

1

2

3

4 5

6 7

8

ERR 9

x = 0

y = 0

[¬(x > 0)][x > 0]

x = −x [y > 0]

[¬(y > 0)]y = −y y = −y

[(x+ y ≤ 0)][¬(x+ y ≤ 0)]

>

x ≤ 0

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)

x = 0

y = 0

ART Example

P = {⊥, (x <= 0), (x+y <= 0), (x−y <= 0)}

8

1

2

3

4 5

6 7

8

ERR 9

x = 0

y = 0

[¬(x > 0)][x > 0]

x = −x [y > 0]

[¬(y > 0)]y = −y y = −y

[(x+ y ≤ 0)][¬(x+ y ≤ 0)]

>

x ≤ 0

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)

⊥

x = 0

y = 0

[x > 0]

ART Example

P = {⊥, (x <= 0), (x+y <= 0), (x−y <= 0)}

8

1

2

3

4 5

6 7

8

ERR 9

x = 0

y = 0

[¬(x > 0)][x > 0]

x = −x [y > 0]

[¬(y > 0)]y = −y y = −y

[(x+ y ≤ 0)][¬(x+ y ≤ 0)]

>

x ≤ 0

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)

⊥

x = 0

y = 0

[¬(x > 0)][x > 0]

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)

ART Example

P = {⊥, (x <= 0), (x+y <= 0), (x−y <= 0)}

8

1

2

3

4 5

6 7

8

ERR 9

x = 0

y = 0

[¬(x > 0)][x > 0]

x = −x [y > 0]

[¬(y > 0)]y = −y y = −y

[(x+ y ≤ 0)][¬(x+ y ≤ 0)]

>

x ≤ 0

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)

⊥

x = 0

y = 0

[¬(x > 0)][x > 0]

[y > 0]

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)

ART Example

P = {⊥, (x <= 0), (x+y <= 0), (x−y <= 0)}

8

1

2

3

4 5

6 7

8

ERR 9

x = 0

y = 0

[¬(x > 0)][x > 0]

x = −x [y > 0]

[¬(y > 0)]y = −y y = −y

[(x+ y ≤ 0)][¬(x+ y ≤ 0)]

>

x ≤ 0

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)

⊥

x = 0

y = 0

[¬(x > 0)][x > 0]

[y > 0]

y = −y

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)

ART Example

P = {⊥, (x <= 0), (x+y <= 0), (x−y <= 0)}

8

1

2

3

4 5

6 7

8

ERR 9

x = 0

y = 0

[¬(x > 0)][x > 0]

x = −x [y > 0]

[¬(y > 0)]y = −y y = −y

[(x+ y ≤ 0)][¬(x+ y ≤ 0)]

>

x ≤ 0

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)

⊥

x = 0

y = 0

[¬(x > 0)][x > 0]

[y > 0]

y = −y

[¬(x+ y ≤ 0)]

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)

⊥

ART Example

P = {⊥, (x <= 0), (x+y <= 0), (x−y <= 0)}

8

1

2

3

4 5

6 7

8

ERR 9

x = 0

y = 0

[¬(x > 0)][x > 0]

x = −x [y > 0]

[¬(y > 0)]y = −y y = −y

[(x+ y ≤ 0)][¬(x+ y ≤ 0)]

>

x ≤ 0

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)

⊥

x = 0

y = 0

[¬(x > 0)][x > 0]

[y > 0]

y = −y

[(x+ y ≤ 0)][¬(x+ y ≤ 0)]

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)⊥

ART Example

P = {⊥, (x <= 0), (x+y <= 0), (x−y <= 0)}

8

1

2

3

4 5

6 7

8

ERR 9

x = 0

y = 0

[¬(x > 0)][x > 0]

x = −x [y > 0]

[¬(y > 0)]y = −y y = −y

[(x+ y ≤ 0)][¬(x+ y ≤ 0)]

>

x ≤ 0

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)

⊥

x = 0

y = 0

[¬(x > 0)][x > 0]

[y > 0] [¬(y > 0)]

y = −y

[(x+ y ≤ 0)][¬(x+ y ≤ 0)]

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0) (x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)

(x ≤ 0) ∧ (x+ y ≤ 0) ∧ (x− y ≤ 0)⊥

Already Explored

CEGAR

• During manual veri�cation we add information on demand

• When a proof fails we analyze the reason

• We add pre-/post-conditions as necessary

• Idea: Use the same idea within automatic predicate abstraction

• When a proof fails let the veri�er analyze the reason

• Ask it to re�ne the abstraction as necessary

CEGAR: CounterExample-Guided Abstraction Re�nement

9

• Safety veri�cation: Prove no path from initial to �nal state.

• Problem: Huge (in�nite) state graph 10

Error

Initial

• Safety veri�cation: Prove no path from initial to �nal state.

• Problem: Huge (in�nite) state graph 10

Error

Initial

Safe

Predicate Abstraction: Merge states satisfying same predicates

to one abstract state 10

Error

Initial

Safe

Predicate Abstraction: Merge states satisfying same predicates

to one abstract state 10

Error

Initial

Over-Approximation: Make a transition from an abstract state if

at least one corresponding concrete state has the transition. 10

Error

Initial

Over-Approximation: Make a transition from an abstract state if

at least one corresponding concrete state has the transition. 10

Error

Initial

Over-Approximation: Make a transition from an abstract state if

at least one corresponding concrete state has the transition. 10

Error

Initial

Is the path to error

genuine?

Over-Approximation: Make a transition from an abstract state if

at least one corresponding concrete state has the transition. 10

Error

Initial

Over-Approximation: Make a transition from an abstract state if

at least one corresponding concrete state has the transition. 10

Error

Initial

Spurious error path:

introduced due to

coarse abstraction

Over-Approximation: Make a transition from an abstract state if

at least one corresponding concrete state has the transition. 10

Error

Initial

Abstraction Re�nement:

Add more predicates

to make abstraction

at a �ner granularity

Over-Approximation: Make a transition from an abstract state if

at least one corresponding concrete state has the transition. 10

Error

Initial

Spurious path to error

is removed

Continue searching in the new abstract state space.

CounterExample-Guided Abstraction Re�nement (CEGAR) 10

Error

Initial

CounterExample-Guided Abstraction Re�nement

Compute approximation of system
w.r.t. set of predicates

Abstract model has
a path to error?

No Program

Yes

Path is spurious?
Has ErrorNo

Refine abstraction
Yes

CEGAR

Correct

11

CounterExample-Guided Abstraction Re�nement

Compute approximation of system
w.r.t. set of predicates

Abstract model has
a path to error?

No Program

Yes

Path is spurious?
Has ErrorNo

Refine abstraction
Yes

CEGAR

Correct

11

CounterExample-Guided Abstraction Re�nement

Compute approximation of system
w.r.t. set of predicates

Abstract model has
a path to error?

No Program

Yes

Path is spurious?
Has ErrorNo

Refine abstraction
Yes

CEGAR

Correct

11Abstraction re�nement: Craig interpolation

Craig Interpolation

F G
I

Craig interpolant for an inconsistent pair

of formulae (F,G) is a formula I s.t.

1. F → I,

2. I ∧G is unsatis�able,

3. I refers only to the common variables

of F and G.

Interpolant summarizes the reason two formulae are inconsistent in their

shared language

12

Set of States

Craig Interpolation

F G
I

Craig interpolant for an inconsistent pair

of formulae (F,G) is a formula I s.t.

1. F → I,

2. I ∧G is unsatis�able,

3. I refers only to the common variables

of F and G.

Interpolant summarizes the reason two formulae are inconsistent in their

shared language

12

Set of States

(A ∧ B , ¬B)
A,B ∈ B

Craig Interpolation

F G
I

Craig interpolant for an inconsistent pair

of formulae (F,G) is a formula I s.t.

1. F → I,

2. I ∧G is unsatis�able,

3. I refers only to the common variables

of F and G.

Interpolant summarizes the reason two formulae are inconsistent in their

shared language

12

Set of States

(A ∧ B , ¬B)

common variables

A,B ∈ B

Craig Interpolation

F G
I

Craig interpolant for an inconsistent pair

of formulae (F,G) is a formula I s.t.

1. F → I,

2. I ∧G is unsatis�able,

3. I refers only to the common variables

of F and G.

Interpolant summarizes the reason two formulae are inconsistent in their

shared language

12

Set of States

(A ∧ B , ¬B)

I = B

common variables

A,B ∈ B

Craig Interpolation

F G
I

Craig interpolant for an inconsistent pair

of formulae (F,G) is a formula I s.t.

1. F → I,

2. I ∧G is unsatis�able,

3. I refers only to the common variables

of F and G.

Interpolant summarizes the reason two formulae are inconsistent in their

shared language

12

Set of States

(A ∧ B , ¬B)

I = B
6|=

common variables

A,B ∈ B

Craig Interpolation

F G
I

Craig interpolant for an inconsistent pair

of formulae (F,G) is a formula I s.t.

1. F → I,

2. I ∧G is unsatis�able,

3. I refers only to the common variables

of F and G.

Interpolant summarizes the reason two formulae are inconsistent in their

shared language

• Craig's Theorem [1957]:

• First-order logic has the interpolation property

• If F ∧G is unsatis�able, then a Craig interpolant exists

• For certain theories (like linear arithmetic) interpolant can be

derived from a refutation of F ∧G in polynomial time

12

Set of States

Craig Interpolation

F G
I

Craig interpolant for an inconsistent pair

of formulae (F,G) is a formula I s.t.

1. F → I,

2. I ∧G is unsatis�able,

3. I refers only to the common variables

of F and G.

Interpolant summarizes the reason two formulae are inconsistent in their

shared language

Let Γ = {F1, F2, · · · , Fn} be a set of formulae such that
∧

Γ ≡ false
An Inductive Interpolant Sequence for Γ is a set {I0, I1, · · · , In} such that:

1. I0 = true and In = false

2. For every 0 ≤ j < n : Ij ∧ Fj+1 → Ij+1

3. For every 0 < j < n : L(Ij) ⊆ L(F1, · · · , Fj) ∩ L(Fj+1, · · · , Fn)

12

Set of States

CEGAR: Example

x ≥ 0 ∧ y ≥ 0

q2

q3 q4

x 6= y

x > y x ≤ y

x = y

x = −1

x ′ = x − y y ′ = y − x

errerr q0

q1q5

13

CEGAR: Example

x ≥ 0 ∧ y ≥ 0

q2

q3 q4

x 6= y

x > y x ≤ y

x = y

x = −1

x ′ = x − y y ′ = y − x

errerr q0

q1q5

q0, ∅
x ≥ 0 ∧ y ≥ 0

x = −1
err

q5, ∅

x = y

q1, ∅

13

CEGAR: Example

x ≥ 0 ∧ y ≥ 0

q2

q3 q4

x 6= y

x > y x ≤ y

x = y

x = −1

x ′ = x − y y ′ = y − x

errerr q0

q1q5

q0, ∅
x ≥ 0 ∧ y ≥ 0

x = −1
err

q5, ∅

x = y

q1, ∅

•
(

(x ≥ 0 ∧ y ≥ 0)︸ ︷︷ ︸
A1

∧ (x = y)︸ ︷︷ ︸
A2

∧ (x = −1)︸ ︷︷ ︸
A3

)
= false

• Interpolant: {x ≥ 0, x ≥ 0}
13

CEGAR: Example

x ≥ 0 ∧ y ≥ 0

q2

q3 q4

x 6= y

x > y x ≤ y

x = y

x = −1

x ′ = x − y y ′ = y − x

errerr q0

q1q5 {x ≥ 0}
{x ≥ 0}

q0, ∅
x ≥ 0 ∧ y ≥ 0

x = −1
err

q5, ∅

x = y

q1, ∅

•
(

(x ≥ 0 ∧ y ≥ 0)︸ ︷︷ ︸
A1

∧ (x = y)︸ ︷︷ ︸
A2

∧ (x = −1)︸ ︷︷ ︸
A3

)
= false

• Interpolant: {x ≥ 0, x ≥ 0}
13

CEGAR: Example

x ≥ 0 ∧ y ≥ 0

q3

x 6= y

x > y x ≤ y

x = y

x = −1

x ′ = x − y y ′ = y − x

errerr q0

q1q5 {x ≥ 0}
{x ≥ 0}

q2

q4

q0, ∅
x ≥ 0 ∧ y ≥ 0

q1, x ≥ 0
x = y

q5, x ≥ 0
q2, ∅
x 6= y

q4, ∅

q1, ∅

q5, ∅

err

x ≤ y

y ′ = y − x

x = y

x = −1

Infeasible
suffix

x = −1

13

CEGAR: Example

x ≥ 0 ∧ y ≥ 0

q3

x 6= y

x > y x ≤ y

x = y

x = −1

x ′ = x − y y ′ = y − x

errerr q0

q1q5 {x ≥ 0}
{x ≥ 0}

q2

q4

q0, ∅
x ≥ 0 ∧ y ≥ 0

q1, x ≥ 0
x = y

q5, x ≥ 0
q2, ∅
x 6= y

q4, ∅

q1, ∅

q5, ∅

err

x ≤ y

y ′ = y − x

x = y

x = −1

Infeasible
suffix

x = −1

•
(
(x ≤ y)︸ ︷︷ ︸

A1

∧ (y1 = y − x)︸ ︷︷ ︸
A2

∧ (x = y1)︸ ︷︷ ︸
A3

∧ (x = −1)︸ ︷︷ ︸
A4

)
= false

• Interpolant: {x ≤ y, y1 ≥ 0, x ≥ 0} 13

CEGAR: Example

x ≥ 0 ∧ y ≥ 0

q2

q3 q4

x 6= y

x > y x ≤ y

x = y

x = −1

x ′ = x − y y ′ = y − x

errerr q0

q1q5

q0, ∅
x ≥ 0 ≥ y ≥ 0

q1, x ≥ 0
x = y

q5, x ≥ 0 q2, ∅

x 6= y

q4, x ≤ y
x ≤ y

y ′ = y − x
x = y

q1, y ≥ 0

x 6= y
q3, x > y

x > y

x ′ = x − y

x = −1

13

Abstract Reachability Graph:

Unfolding the program in the

abstract space

Divergence

x = 0

while (?) {

x = x + 2

}

assert (x 6= 1)

Spurious paths

x′ = 0

x = 1

x = 1

x′ = x+ 2

x′ = 0

x = 1

x′ = x+ 2

x′ = x+ 2

x′ = 0

• Classical predicate abstraction eliminates spurious counter-examples

one by one

• Predicate abstraction divergence [Jhala & McMillan 2006]

• The acceleration technique solves this problem 14

Solution by Acceleration

x = 0

while (?) {

x = x + 2

}

assert (x 6= 1)

x′ = 0

x = 1

x′ = x+ 2

q0

q1

E

• Compute transitive closure of loop relation R∗ =
∨∞

i=0R
i

• (x′ = x+ 2)∗ = (x′ = x) ∨ (x′ = x+ 2) ∨ (x′ = x+ 4) ∨ · · ·
= (x′ ≥ x) ∧ 2|(x′ − x)

UNSAT

x = 0∧
x′ ≥ x∧
2|(x′ − x) ∧ x′ = 1

x′ = 0

x = 1

x′ = x+ 2

x′ = 0

x′ ≥ x ∧ 2|(x′ − x)

x = 1

15

Acceleration

• Acceleration of Integer arithmetic are Presburger de�nable for

1. Octagonal relation [Bozga et al. 2006]

• Conjunctions of terms x± y ≤ c, c ∈ Z
2. Finite Monoid A�ne Relations [Finkel & Leroux 2002]

• T ≡ (x′ = A⊗ x+ b) ∧ φ(x)
• where A ∈ ZN×N, b ∈ Z, φ is a Presburger formula, and {A,A2, · · · }

is �nite

• Many programs do not �t into any of these categories

• Acceleration itself is not su�cient for proving some programs

16

Static Acceleration

• Use acceleration to prevent divergence in predicate abstraction

• First try: use acceleration statically

• Introduce loop elimination rule in large block encoding

Sequence

l1

l2 l3

l1; l2 l1; l3

Choice

l1 l2 l1 ∨ l2

Loop Elimination

l1

l2

l3

l1

l3

l2∗

17

Static Acceleration

Drawback

• Large block encoding with static acceleration

combines all labels together

• Potentially generates very big formulas

• There might be a short path to error

• We'd like to have on-demand acceleration E

Drawback

• Loop relation may not be precisely accelerable

• How can we use approximate acceleration when precise is impossible?

18

Accelerating Counter-examples

x = 0

while (?) {

x = x + 2

}

assert (x 6= 1)

x′ = 0

x = 1

x′ = x+ 2

q0

q1

E

x′ = 0
Eq0 q1

spurious
counter-examples

x = 1

x′ = 0q0 q1
x′ = x+ 2 q1 E

x = 1x′ = x+ 2 q1

x′ = 0q0 q1
x′ = x+ 2 q1 E

x = 1

• Generalize when a pattern is repeated for a number of times (delay)
x′ = 0q0 q1

(x′ = x+ 2)∗
q1 E

x = 1
19

Accelerating Interpolants [Hojjat et al. 2012]

t0 t1∗ t2 Eq0 q1 q1

I0I0 I1

• 〈I0, I1〉 are the interpolants for the sequence 〈t0, t1∗, t2〉
• They are not necessarily inductive

• Consider interpolant images instead of original interpolants

• 〈I0, sp(I0, t1∗)〉
• 〈wp(t1∗, I1), I1〉

• Theorem. Any of the above sequences are inductive interpolants

20

Accelerating Interpolants [Hojjat et al. 2012]

t0 t1∗ t2 Eq0 q1 q1

I0I0 I1

• 〈I0, I1〉 are the interpolants for the sequence 〈t0, t1∗, t2〉
• They are not necessarily inductive

• Consider interpolant images instead of original interpolants

• 〈I0, sp(I0, t1∗)〉
• 〈wp(t1∗, I1), I1〉

• Theorem. Any of the above sequences are inductive interpolants

20

Accelerating Interpolants [Hojjat et al. 2012]

t0 t1∗ t2 Eq0 q1 q1

I0I0 I1

• 〈I0, I1〉 are the interpolants for the sequence 〈t0, t1∗, t2〉
• They are not necessarily inductive

• Consider interpolant images instead of original interpolants

• 〈I0, sp(I0, t1∗)〉
• 〈wp(t1∗, I1), I1〉

• Theorem. Any of the above sequences are inductive interpolants

20

Dynamic Acceleration

x = 0

while (?) {

x = x + 2

}

assert (x 6= 1)

x′ = 0

x = 1

x′ = x+ 2

q0

q1

E

x′ = 0q0 q1
(x′ = x+ 2)∗

q1 E
x = 1

Accelerate

x′ = 0q0 q1
x ≤ x′ ∧ 2|(x′ − x)

q1 E
x = 1

I0 : (x = 0) I1 : (2|x)
Compute Image:

x′ = 0q0 q1
x ≤ x′ ∧ 2|(x′ − x)

q1 E
x = 1

I : x ≥ 0 ∧ (2|x)I : x ≥ 0 ∧ (2|x)

sp(x = 0, x ≤ x′ ∧ 2|(x′ − x)

21

Experiments

Model
Time [s]

Flata Pred. Abs. Static Acc. Dynamic Acc.

Examples from [Jhala & McMillan 2006]

anubhav (C) 0.6 1.5 1.8 1.5

copy1 (E) 1.7 8.1 1.2 3.5

cousot (C) 0.5 - - 4.3

loop1 (C) 0.4 2.1 0.9 2.1

loop (C) 0.4 0.3 0.9 0.3

scan (E) 2.4 - 1.0 2.9

string_concat1 (E) 4.4 - 3.2 5.0

string_concat (E) 4.1 - 2.5 4.2

string_copy (E) 3.7 - 1.5 3.6

substring1 (E) 0.3 1.6 23.9 1.5

substring (E) 1.8 0.6 1.6 0.6
22

Experiments

Model
Time [s]

Flata Pred. Abs. Static Acc. Dynamic Acc.

Examples from David Monniaux

boustrophedon (C) - - - 12.2

gopan (C) 0.5 - - 6.7

halbwachs (C) - - 1.6 8.2

rate_limiter (C) - 7.2 2.7 7.1

Examples from Array Programs

rotation_vc.1 (C) 0.7 2.0 6.3 1.9

rotation_vc.2 (C) 1.3 2.1 202.2 2.1

rotation_vc.3 (C) 1.2 0.3 181.5 0.3

rotation_vc.1 (E) 1.1 1.4 14.9 1.4

split_vc.1 (C) 4.2 2.7 - 2.7

split_vc.2 (C) 2.8 2.1 - 2.1

split_vc.3 (C) 2.9 0.5 - 0.5

split_vc.1 (E) 30.6 2.0 - 2.0

23

