
Introduction to Formal Methods

Lecture 3

Bounded Model Checking

Hossein Hojjat & Fatemeh Ghassemi

September 30, 2018

Bounded Model Checking

• Idea: only look for bugs up to speci�c depth

• One of the most successful techniques for hardware analysis

• Enabled by advances in SAT solving

• Mostly incomplete in practice

• Can �nd bugs, cannot prove a system satis�es a speci�cation

1

Bounded Model Checking Steps

• Represent the system and the speci�cation symbolically

• By using e.g. propositional logic formulas

(p, p, p ∨ q, p ∧ q, p→ q,...)

• Reduce the bounded reachability problem to satis�ability of a

Boolean formula

• Use e�cient theorem provers (SAT solvers) for solving the

satis�ability problem

2

Symbolic Representation of State Spaces

Key idea:

Instead of reasoning about individual states, reason about sets of states

How do we represent a set of states?

Symbolic Representation:

• Set = predicate

Predicate P (x) represents set S : S = {x | P (x)}
• Set of states = predicate on state variables

3

Symbolic Representation of Sets of States

Examples:

• Assume 3 state variables, p, q, r of type Boolean.

S1 : p ∨ q = {pqr, pqr, pqr, pqr, pqr, pqr}
• Assume 3 state variables, x, i, b, of types Real, Integer, Boolean.

S2 : (x ≤ 0) ∧ (b→ i ≥ 0)

How many states are in S2?

4

Symbolic Representation of Transition Relations

Key idea:

Use a predicate on two copies of the state variables:

unprimed (current state) + primed (next state)

• If ~x is the vector of state variables, then the transition relation R is

a predicate on ~x and ~x′

R(~x, ~x′)

• e.g., for three state variables, x, i, b:

R(x, i, b, x′, i′, b′)

5

Symbolic Representation of Transition Relations

Examples:

• Assume one state variable, p, of type Boolean

R1 : (p→ p′) ∧ (p→ p′)

Which transition relation does this represent? Is it a relation or a

function (deterministic)?

• Assume one state variable, n, of type Integer.

R2 : n′ = n+ 1 ∨ n′ = n

Which transition relation does this represent? Is it a relation or a

function (deterministic)?

6

Symbolic Representation of Transitions Systems

(V, I,R)

where

• V = {x1, x2, · · · , xn} : �nite set of (Boolean) state variables
• Predicate I(~x) on vector ~x = (x1, · · · , xn) represents the set S0 of

initial states

• Predicate R(~x, ~x′) represents the transition relation R

7

Exercise

Represent the transition system symbolically V = {a, b}

a, b a, b

a, b

8

Bounded Reachability

Question: Can a �bad� state be reached in up to n transitions?

Given a transition system (V, I,R) and a set of bad states P , does there

exist a path

s0 −→ s1 −→ · · · −→ sk

in the transition system such that s0 ∈ I and sk ∈ P , and k ≤ n

Key idea: Reduce the above question to a SAT (satis�ability) problem.

9

Bounded Reachability

Transition system (V, I,R) and a set of bad states P

• Bad state reachable in 0 steps i�

SAT
(
I(~x) ∧ P (~x)

)
• Bad state reachable in 1 step i�

SAT
(
I(~x0) ∧R(~x0, ~x1) ∧ P (~x1)

)
• ...

• Bad state reachable in n steps i�

SAT
(
I(~x0) ∧R(~x0, ~x1) ∧ · · · ∧R(~xn−1, ~xn) ∧ P (~xn)

)

10

Example: Two-bit Counter

Is the state (x ∧ y) reachable from the initial state?

00

01 10

11 Boolean Variables: x , y

Initial State: I(x, y) = x ∧ y

Transition Relation:

R(x, y, x′, y′) =
(
x′ = (x 6= y) ∧ y′ = y

)

• Represent initial states and the transition relation as Boolean formulas

• Unroll the transition relation up to a bound k starting from the initial states

11

Example: Two-bit Counter

Is the state (x ∧ y) reachable from the initial state?

00

01 10

11 Boolean Variables: x , y

Initial State: I(x, y) = x ∧ y

Transition Relation:

R(x, y, x′, y′) =
(
x′ = (x 6= y) ∧ y′ = y

)

• Represent initial states and the transition relation as Boolean formulas

• Unroll the transition relation up to a bound k starting from the initial states

11

Example: Two-bit Counter

Is the state (x ∧ y) reachable from the initial state?

00

01 10

11 Boolean Variables: x , y

Initial State: I(x, y) = x ∧ y

Transition Relation:

R(x, y, x′, y′) =
(
x′ = (x 6= y) ∧ y′ = y

)
• Represent initial states and the transition relation as Boolean formulas

• Unroll the transition relation up to a bound k starting from the initial states

11

Example: Two-bit Counter

Is the state (x ∧ y) reachable from the initial state?

00

01 10

11 Boolean Variables: x , y

Initial State: I(x, y) = x ∧ y

Transition Relation:

R(x, y, x′, y′) =
(
x′ = (x 6= y) ∧ y′ = y

)
• Represent initial states and the transition relation as Boolean formulas

• Unroll the transition relation up to a bound k starting from the initial states

(x0 ∧ y0) ∧

x1 = (x0 6= y0) ∧ y1 = y0

∧
x2 = (x1 6= y1) ∧ y2 = y1

∧
x3 = (x2 6= y2) ∧ y3 = y2

 ∧

(x0 ∧ y0)

∨
(x1 ∧ y1)

∨
(x2 ∧ y2)

∨
(x3 ∧ y3)

UNSAT for k = 0

11

Example: Two-bit Counter

Is the state (x ∧ y) reachable from the initial state?

00

01 10

11 Boolean Variables: x , y

Initial State: I(x, y) = x ∧ y

Transition Relation:

R(x, y, x′, y′) =
(
x′ = (x 6= y) ∧ y′ = y

)
• Represent initial states and the transition relation as Boolean formulas

• Unroll the transition relation up to a bound k starting from the initial states

(x0 ∧ y0) ∧

x1 = (x0 6= y0) ∧ y1 = y0

∧
x2 = (x1 6= y1) ∧ y2 = y1

∧
x3 = (x2 6= y2) ∧ y3 = y2

 ∧

(x0 ∧ y0)

∨
(x1 ∧ y1)

∨
(x2 ∧ y2)

∨
(x3 ∧ y3)

UNSAT for k = 1

11

Example: Two-bit Counter

Is the state (x ∧ y) reachable from the initial state?

00

01 10

11 Boolean Variables: x , y

Initial State: I(x, y) = x ∧ y

Transition Relation:

R(x, y, x′, y′) =
(
x′ = (x 6= y) ∧ y′ = y

)
• Represent initial states and the transition relation as Boolean formulas

• Unroll the transition relation up to a bound k starting from the initial states

(x0 ∧ y0) ∧

x1 = (x0 6= y0) ∧ y1 = y0

∧
x2 = (x1 6= y1) ∧ y2 = y1

∧
x3 = (x2 6= y2) ∧ y3 = y2

 ∧

(x0 ∧ y0)

∨
(x1 ∧ y1)

∨
(x2 ∧ y2)

∨
(x3 ∧ y3)

UNSAT for k = 2

11

Example: Two-bit Counter

Is the state (x ∧ y) reachable from the initial state?

00

01 10

11 Boolean Variables: x , y

Initial State: I(x, y) = x ∧ y

Transition Relation:

R(x, y, x′, y′) =
(
x′ = (x 6= y) ∧ y′ = y

)
• Represent initial states and the transition relation as Boolean formulas

• Unroll the transition relation up to a bound k starting from the initial states

(x0 ∧ y0) ∧

x1 = (x0 6= y0) ∧ y1 = y0

∧
x2 = (x1 6= y1) ∧ y2 = y1

∧
x3 = (x2 6= y2) ∧ y3 = y2

 ∧

(x0 ∧ y0)

∨
(x1 ∧ y1)

∨
(x2 ∧ y2)

∨
(x3 ∧ y3)

SAT for k = 3

11

Completeness

• Typical application of Bounded Model Checking:

increment depth until counter-example found

• Incomplete BMC good for falsi�cation not veri�cation

• Can be used for veri�cation by choosing depth which is large enough

• For every �nite system and a property, there exists a number such

that the absence of errors up to that number proves correctness

• Diameter d = longest shortest path from an initial state to any

other reachable state

d = 2

• Using diameter bound is often not practical

• Worst case diameter is exponential. Obtaining better bounds is

sometimes possible, but generally intractable

12

Bug Catching with SAT-Solvers

Main Idea:

Given a program and a speci�cation use a SAT-solver to �nd whether

there exists an execution that violates the speci�cation

Program

Speci�cation
Analysis

Engine
SAT Solver

SAT

(counterexample exists)

UNSAT

(no counterexample found)

CNF

13

CBMC

• Bounded model checker by University of Oxford

http://www.cprover.org/cbmc/

• Processes C code and subset of C++

• Simple Safety Claims

- Array bound checks (i.e., bu�er over�ow)

- Division by zero

- Pointer checks (i.e., NULL pointer dereference)

- Arithmetic over�ow

- User supplied assertions (i.e., assert (i > j))

- etc

14

http://www.cprover.org/cbmc/

How does it work

Transform a programs into a set of equations

1. Simplify control �ow

2. Unwind all of the loops

3. Convert into Single Static Assignment (SSA)

4. Convert into equations

5. Bit-blast

6. Solve with a SAT Solver

7. Convert SAT assignment into a counterexample

15

Control Flow Simpli�cations

• All side e�ect are removed

• e.g., j=i++ becomes j=i;i=i+1

• Control Flow is made explicit

• continue, break replaced by goto

• All loops are simpli�ed into one form

• for, do while replaced by while

16

Loop Unwinding

• All loops are unwound

• can use di�erent unwinding bounds for di�erent loops

• to check whether unwinding is su�cient special �unwinding

assertion� claims are added

• If a program satis�es all of its claims and all unwinding assertions

then it is correct!

• Same for backward goto jumps and recursive functions

17

Loop Unwinding

• while loops are unwound iteratively

• break / continue replaced by

goto

• Assertion inserted after last iteration:

violated if program runs longer than

bound permits

18

void f(...) {
...
while(cond) {

Body;
}
Remainder ;

}

Loop Unwinding

• while loops are unwound iteratively

• break / continue replaced by

goto

• Assertion inserted after last iteration:

violated if program runs longer than

bound permits

18

void f(...) {
...
if(cond) {

Body;
while(cond) {

Body;
}

}

}
Remainder ;

}

Loop Unwinding

• while loops are unwound iteratively

• break / continue replaced by

goto

• Assertion inserted after last iteration:

violated if program runs longer than

bound permits

18

void f(...) {
...
if(cond) {

Body;
if(cond) {

Body;
while(cond) {

Body;
}

}
}
Remainder ;

}

Loop Unwinding

• while loops are unwound iteratively

• break / continue replaced by

goto

• Assertion inserted after last iteration:

violated if program runs longer than

bound permits

18

void f(...) {
...
if(cond) {

Body;
if(cond) {

Body;

assert(!cond)

}

}
}
Remainder ;

}

Example: Su�cient Loop Unwinding

void f (...) {
j = 1
while (j <= 2)

j = j + 1;
Remainder ;

}

void f(...) {
j = 1
if(j <= 2) {

j = j + 1;
if(j <= 2) {

j = j + 1;
if(j <= 2) {

j = j + 1;
assert (!(j <= 2));

}
}

}
Remainder ;

}

19

Example: Insu�cient Loop Unwinding

void f (...) {
j = 1
while (j <= 10)

j = j + 1;
Remainder ;

}

void f(...) {
j = 1
if(j <= 10) {

j = j + 1;
if(j <= 10) {

j = j + 1;
if(j <= 10) {

j = j + 1;
assert (!(j <= 10));

}
}

}
Remainder ;

}

19

Transforming Loop-Free Programs Into Equations

Easy to transform when every variable is only assigned once!

x = a;
y = x + 1;
z = y − 1;

x = a ∧
y = x+ 1 ∧
z = y − 1

20

Transforming Loop-Free Programs Into Equations

When a variable is assigned multiple times, use a new variable for the

RHS of each assignment

x = x + y;
x = x ∗ 2;
a[i] = 100;

x1 = x0 + y0 ∧
x2 = x1 × 2 ∧
a1[i0] = 100

21

Bit-blasting

• Machine arithmetic: Bounded integer e.g., 8bit, 32bit, 64bit

• Numbers are represented by vector of Boolean variables

〈bn−1, bn−2, ..., b0〉
• Encoding of over�ow/rounding-behaviour derived from hardware

implementation

22

Reference

• E. Clarke, A. Biere, R. Raimi, and Y. Zhu.

�Bounded model checking using satis�ability solving�,

Formal Methods in System Design, 19(1):7-34, 2001

23

