Introduction to Formal Methods

Lecture 3
Bounded Model Checking
Hossein Hojjat & Fatemeh Ghassemi

September 30, 2018

Bounded Model Checking

Idea: only look for bugs up to specific depth

One of the most successful techniques for hardware analysis

Enabled by advances in SAT solving

Mostly incomplete in practice

e Can find bugs, cannot prove a system satisfies a specification

Bounded Model Checking Steps

e Represent the system and the specification symbolically
e By using e.g. propositional logic formulas
(p.P.PVaPAGDP— Q...
e Reduce the bounded reachability problem to satisfiability of a
Boolean formula
e Use efficient theorem provers (SAT solvers) for solving the
satisfiability problem

Symbolic Representation of State Spaces

Instead of reasoning about individual states, reason about sets of states

How do we represent a set of states?

Symbolic Representation:

e Set = predicate
Predicate P(x) represents set S : S={z| P(z)}

e Set of states = predicate on state variables

Symbolic Representation of Sets of States

Examples:

e Assume 3 state variables, p, ¢, r of type Boolean.

St pV q = {pqr, pqr, pqr, pqr, pqr, pqr }
e Assume 3 state variables, x, i, b, of types Real, Integer, Boolean.
Sa (x <0)A(b—1i>0)

How many states are in S57

Symbolic Representation of Transition Relations

Key idea:

Use a predicate on two copies of the state variables:

unprimed (current state) + primed (next state)

e If 7 is the vector of state variables, then the transition relation R is
a predicate on Z and 7

-

R(Z,x")

e e.g., for three state variables, z, i, b:

R(x,i,b,2’,i',b")

Symbolic Representation of Transition Relations

Examples:

e Assume one state variable, p, of type Boolean

Ri: (@—=p)AN@®—D)

Which transition relation does this represent? Is it a relation or a
function (deterministic)?

e Assume one state variable, n, of type Integer.
Ry : n=n+1vn =n

Which transition relation does this represent? Is it a relation or a
function (deterministic)?

Symbolic Representation of Transitions Systems

(V,1,R)
where
o V={xy,29, -+ ,x,} : finite set of (Boolean) state variables
e Predicate I(Z) on vector ¥ = (1, -+ ,x,) represents the set Sy of
initial states

e Predicate R(Z,z’) represents the transition relation R

Exercise

Represent the transition system symbolically V' = {a, b}

Q

Bounded Reachability

Question: Can a "bad” state be reached in up to n transitions?

Given a transition system (V, I, R) and a set of bad states P, does there
exist a path
So —> 81 —> -+ —> Sk

in the transition system such that sp € [and s, € P, and k < n

Key idea: Reduce the above question to a SAT (satisfiability) problem.

Bounded Reachability

Transition system (V, I, R) and a set of bad states P

e Bad state reachable in 0 steps iff
SAT(I(Z) A P(Z))
e Bad state reachable in 1 step iff
SAT(I(:U_{)) A R(zp,27) A P(x_'l))

e Bad state reachable in n steps iff

SAT(I(z5) A R(20, 1) A+ -+ A R(wp1, @) A P(a7,))

10

Example: Two-bit Counter

Is the state (z A y) reachable from the initial state?
H‘—@D Boolean Variables: z , y

e Represent initial states and the transition relation as Boolean formulas

11

Example: Two-bit Counter

Is the state (z A y) reachable from the initial state?

H‘—@D Boolean Variables: = , y
Initial State: I(z,y) =T AT
0)—(@9)

e Represent initial states and the transition relation as Boolean formulas

11

Example: Two-bit Counter

Is the state (z A y) reachable from the initial state?

H‘—@D Boolean Variables: = , y
Initial State: I(z,y) =T AT
0)—(@9)

Transition Relation:
R(e,y.2',y) = (¢ = (@ #y) Ay =7)

e Represent initial states and the transition relation as Boolean formulas

11

Example: Two-bit Counter

Is the state (z A y) reachable from the initial state?

—(—D
54

Boolean Variables: x , y

Initial State: I(z,y) =T AT
Transition Relation:

R(z,y,a'y) = (' = (e £y) Ay =7)

e Represent initial states and the transition relation as Boolean formulas

e Unroll the transition relation up to a bound k starting from the initial states

(ToAT0) A

UNSAT for k=0

(o A yo)

11

Example: Two-bit Counter

Is the state (z A y) reachable from the initial state?

—(—D
54

Boolean Variables: x , y
Initial State: I(z,y) =T AT
Transition Relation:

Ra.y.a'y) = (o' = (@ £) Ay =7)

e Represent initial states and the transition relation as Boolean formulas

e Unroll the transition relation up to a bound k starting from the initial states

(ToAT0) A

UNSAT fork =1

x1 = (o #Yo) Ny1 =To

(o A yo)
V

(z1 A1)

11

Example: Two-bit Counter

Is the state (z A y) reachable from the initial state?

—(—D
54

Boolean Variables: x , y
Initial State: I(z,y) =T AT

Transition Relation:

Ra.y.a'y) = (o' = (@ £) Ay =7)

e Represent initial states and the transition relation as Boolean formulas

e Unroll the transition relation up to a bound k starting from the initial states

(ToAT0) A

UNSAT for k=2

x1 = (o #Yo) Ny1 =To
A

To= (1 # Y1) N2 =71

A

(o A yo)
V
(x1 Ayr)
V
(T2 A y2)

11

Example: Two-bit Counter

Is the state (z A y) reachable from the initial state?

H‘—@D Boolean Variables: = , y
Initial State: I(z,y) =T AT
0)—(@9)

Transition Relation:
R(e,y.2',y) = (¢ = (@ #y) Ay =7)

e Represent initial states and the transition relation as Boolean formulas

e Unroll the transition relation up to a bound k starting from the initial states

(o A o)
z1 = (To # Yo) NY1 = Wo v
A\ ($1Ay1)
(ToA%0) A Ta=@1#Yy) Ay =71 | A v
A (132/\y2)
3= (T2 #Y2) Ny3 =2 \
SAT for k=3 (z3 A ys) -

Completeness

e Typical application of Bounded Model Checking:
increment depth until counter-example found

e Incomplete BMC good for falsification not verification

e Can be used for verification by choosing depth which is large enough

e For every finite system and a property, there exists a number such
that the absence of errors up to that number proves correctness

e Diameter d = longest shortest path from an initial state to any
other reachable state

- L

e Using diameter bound is often not practical
e Worst case diameter is exponential. Obtaining better bounds is
sometimes possible, but generally intractable

12

Bug Catching with SAT-Solvers

Main ldea:
Given a program and a specification use a SAT-solver to find whether
there exists an execution that violates the specification

SAT

counterexample exists
Program (P)

’—l\AnaIysis CNF
Engine ——— SAT Solver

UNSAT
(no counterexample found)

13

CcBMC

e Bounded model checker by University of Oxford

http://www.cprover.org/cbmc/

e Processes C code and subset of C++

e Simple Safety Claims

Array bound checks (i.e., buffer overflow)
Division by zero

Pointer checks (i.e., NULL pointer dereference)
Arithmetic overflow

User supplied assertions (i.e., assert (i > j))
etc

14

http://www.cprover.org/cbmc/

How does it work

Transform a programs into a set of equations

N o ok~ w N

Simplify control flow

Unwind all of the loops

Convert into Single Static Assignment (SSA)
Convert into equations

Bit-blast

Solve with a SAT Solver

Convert SAT assignment into a counterexample

15

Control Flow Simplifications

e All side effect are removed

e e.g., j=i++ becomes j=1i;i=1i+1
e Control Flow is made explicit

e continue, break replaced by goto
e All loops are simplified into one form

e for, do while replaced by while

16

Loop Unwinding

e All loops are unwound

e can use different unwinding bounds for different loops
e to check whether unwinding is sufficient special “unwinding
assertion” claims are added

e If a program satisfies all of its claims and all unwinding assertions
then it is correct!

e Same for backward goto jumps and recursive functions

17

Loop Unwinding

void f£(...) {

while(cond) {
Body ;
}

Remainder;
} e break / continue replaced by

e while loops are unwound iteratively

goto

18

Loop Unwinding

void f£(...) {

if(cond) {

Body ;
while(cond) {
Body; e while loops are unwound iteratively
} e break / continue replaced by
} goto
Remainder;

18

Loop Unwinding

void f£(...) {

if (cond) {
Body ;
if (cond) {
Body;
while(cond) { e break / continue replaced by
Body; goto

e while loops are unwound iteratively

}

Remainder;

18

Loop Unwinding

void f£(...) {

if(cond) {

Body ;
if (cond) { . .
B e while loops are unwound iteratively
e break / continue replaced by
assert(!cond) goto
e Assertion inserted after last iteration:
} violated if program runs longer than
} bound permits
Remainder;

18

Example: Sufficient Loop Unwinding

void f£(...) {

j =1
if(j <= 2) {
=3+ 1
void £(...) A if(j <= 2) A
j=1 i=3 o+ 1
while (j <= 2) if(j <= 2) {
=31 =3+ 1
Remainder; assert (! (j <= 2));
} }
}
}
Remainder;

19

Example: Insufficient Loop Unwinding

void f£(...) {

j =1
if(j <= 10) {
i=3+ L
void £(...) A if(j <= 10) A
j =1 =3+ 4
while (j <= 10) if (j <= 10) {
i=3+L =3+t
Remainder; assert (! (j <= 10));
} }
}
}
Remainder;

19

Transforming Loop-Free Programs Into Equations

Easy to transform when every variable is only assigned once!

= a; r=a A
= o —_—
x + 1; y=z+1A
z =y — 1;

g=g=1

20

Transforming Loop-Free Programs Into Equations

When a variable is assigned multiple times, use a new variable for the
RHS of each assignment
X = x + y;

1 =20+ Yo A

X = X % 2; -

To=T1 X2 A

ap [Lg} =100

al[i]l = 100;

21

Bit-blasting

e Machine arithmetic: Bounded integer e.g., 8bit, 32bit, 64bit

e Numbers are represented by vector of Boolean variables
(bp—1,br—2, ..., bo)

e Encoding of overflow/rounding-behaviour derived from hardware
implementation

22

Reference

e E. Clarke, A. Biere, R. Raimi, and Y. Zhu.
“Bounded model checking using satisfiability solving”,
Formal Methods in System Design, 19(1):7-34, 2001

23

