Introduction to Formal Methods

Lecture 4
Satisfiability Modulo Theories
Hossein Hojjat & Fatemeh Ghassemi

October 2, 2018

e Do f and g produce the same results for the same values of inputs?

int f(int y) A
int x, z;

z = y; int g(int x) {
y = X return x * X;
X = z; }

return x * X;

e Do f and g produce the same results for the same values of inputs?

Satisfiable iff programs

non-equivalent

int f(int y) A

int x,
zZ =y,
y = X3
X = z;

return

z;

X ¥ X

(z=yAy1=xAx1=2Aret; =21 X 21)A
(rety =y x y)A
(rety # retsy)

int g(int x) {
return X * X;

e Do f and g produce the same results for the same values of inputs?

_ (z=yAy1=xAx1=2Aret; =21 X 21)A
Satisfiable iff programs
(ret; =y X y)A

(rety # retsy)

We may bit-blast the formula into propositional logic
(e.g. 64-bit machine)

Problem: Bit-blasting does not scale

non-equivalent

For encoding multiplication we need quadratical number of clauses
Using an SMT solver, the formula can be solved as it is

int f(int y) A

int x, z;

z = y; int g(int x) {
y = X, return X * X;
X =z }

return x * X;

e Boolean engines such as SAT solvers are typical engines of choice for
today’s industrial verification applications

However, systems are usually designed and modeled at a higher level

than Boolean

Translation to Boolean logic is simple but laborious and expensive

A primary goal of research in Satisfiability Modulo Theories (SMT)
is to create verification engines that:

- Can reason natively at a higher level of abstraction

- Retain the speed and automation of today’s Boolean engines

Many applications naturally need features beyond propositional logic

e First-order terms: variables, constants, function symbols
fla)=b—=g(b)=a

e Theories: e.g. integer arithmetic, sets, floating points
n<l0—=nxm<20

e Quantifiers: First-order “forall” V and “exists” (3)

Growth of SMT

Articles per year by search phrase (from Google Scholar)
2~OOO I I I I I T T T T T
’%“SMT Solver" ‘

1,500 - =

1,000 - =

500 - |

\ \ \ \ \
2008 2010 2012 2014 2016

Satisfiability Modulo Theories (SMT)

Is formula ¢ satisfiable modulo theory 77

x4+ 2 =y— f (select (store(a,x,3),y —2) =f(y—x+ 1

Array Theory Arithmetic Uninterpreted Functions

From SAT to SMT

SAT Solver

e Input:
a<bAb<a+zAz=0A(f(a)# f(b)V (q(a) A g(b+ x)))

From SAT to SMT

SAT Solver

e Input:
a<bAb<a+zAz=0A(f(a)# f(b)V (q(a) A g(b+ x)))

e To SAT solver:
Pa<b A Po<ata A Pa=o A (TP f)=f1) ¥ Pg(a) N "Pqo+2)))

From SAT to SMT

SAT Solver

Boolean Model
e Input:

a<bAb<a+zAz=0A(f(a)# f(b)V (q(a) A g(b+x)))
e To SAT solver:

Pa<b A Po<ata A Pa=o A (TP f)=f1) ¥ Pg(a) N "Pqo+2)))
e Boolean model: Pa<b; Po<a+z, Pr=0; _'pf(a):f(b)

From SAT to SMT

Theory SAT Solver
Reasoner

Boolean Model
e Input:

a<bAb<a+zAz=0A(f(a)# f(b)V (q(a) A g(b+x)))
e To SAT solver:
Da<b N Pv<ataz N\ Pz=0 N (_'pf(a)zf(b) \ (pq(a) A _'pq(b—i-:c)))
Boolean model: Pa<b; Po<a+z, Pr=0; _'pf(a):f(b)
Theory reasoner: a<bb<a+uz,2=0,f(a)# f(b)

From SAT to SMT

Theory SAT Solver
Reasoner

Boolean Model
e Input:

a<bAb<a+zAz=0A(f(a)# f(b)V (q(a) A g(b+x)))
e To SAT solver:
Da<b N Pv<ataz N\ Pz=0 N (_'pf(a)zf(b) \ (pq(a) A _'pq(b—i-:c)))
Boolean model: Pa<b; Po<a+z, Pr=0; _'pf(a):f(b)
Theory reasoner: a<bb<a+uz,2=0,f(a)# f(b)
unsatisfiable

From SAT to SMT

Conflict Clause

Theory SAT Solver
Reasoner

Input:

Boolean Model

a<bAb<a+zAz=0A(f(a)# f(b)V (q(a) A g(b+x)))

To SAT solver:

Pa<b A Po<ata A Pa=o A (TP f)=f1) ¥ Pg(a) N "Pqo+2)))

Boolean model:

Pa<b; Pb<a+zs Px=0; "Pf(a)=f(b)

Theory reasoner: a<bb<a+uz,2=0,f(a)# f(b)

unsatisfiable
New clause:

TPa<b V Pb<ataz V TPx=0 V Pf(a)=f(b)

From SAT to SMT

SMT Solver

Conflict Clause

Theory SAT Solver
Reasoner

Boolean Model
e Input:

a<bAb<a+zAz=0A(f(a)# f(b)V (q(a) A g(b+x)))
e To SAT solver:
Pa<b A Po<ata A Pa=o A (TP f)=f1) ¥ Pg(a) N "Pqo+2)))
Boolean model: Pa<b; Pv<a+z,Pz=0, "Pf(a)=f(b)
Theory reasoner: a<bb<a+uz,2=0,f(a)# f(b)
unsatisfiable
New clause: Pa<b V Pv<a+a ¥V Pz=0 V Df(a)=f(b)

SMT-LIB

e SMT-LIB is a language for specifying input to SMT solvers
e Basic instructions:

(declare—fun x () Int) declare an integer constant x

(> x 0)) add x > 0 to known facts

check if there exist an assignment
that makes all known facts true

(get-model) print this assignment

(assert
(check-sat)

http://rised4fun.com/z3

Microsoft:

3 Research

Is this formula satisfiable?
1 (declare-fun x () Int)
(declare-fun x1 () Int)
(declare-fun y () Int)
(declare-fun y1 () Int)
(declare-fun z () Int)
(declare-fun reti1 () Int)
(declare-fun ret2 () Int)
(assert (and (= z y)(= y1 x)(= x1 z)(= retl (* x1 x1))(= ret2 (* y y))(not (= retl ret2))))
(check-sat)
10 (exit)
11

v:|.eo permalin
tutorial ! shortuut Alt+B

unsat

© N U A ®WN

samples about z3 - Efficient Theorem Prover
smtc_arith Z3 is a high-performance theorem prover. Z3 supports arithmetic, fixed-size bit-
doc_examples vectors, extensional arrays, datatypes, uninterpreted functions, and quantifiers

http://rise4fun.com/z3

SMT Solvers: Language

Language of SAT solvers is Boolean logic

Language of SMT solvers is First-Order Logic (FOL)

FOL includes the Boolean operations of Boolean logic, instead of

propositional variables, more complicated expressions are allowed

A first-order language must specify its signature: the set of
constant, function, and predicate symbols that are allowed

Each predicate and function symbol has an associated arity:
natural number indicating how many arguments it takes

- Equality is a special predicate symbol of arity 2
- Constant symbols can also be thought of as functions whose arity is 0

First-Order Languages: Examples

Propositional Logic

e Predicate symbols: xq,25,...
e Constant symbols: none

e Function symbols: none

Elementary Number Theory

e Predicate symbols: <
e Constant symbols: 0

e Function symbols: S (successor), +, x

10

First-Order Logic: Syntax

Terms

e Variables and constants are terms

e For each function symbol f of arity n, and terms t1,...,t,,

f(ty, -+ t,) is a term
e Atom: an expression of the form: P(ty,--- ,t,) where P is a
predicate symbol of arity n and ¢, -- ,t,, are terms

e An atom or its negation is called a literal

e Formulas are built from literals using the Boolean operators and
quantification

11

existential quantifier: Jx.F(z) “"there exists an x such that F'(x)"
universal quantifier: V. F(x) “for all z, F(x)"
Ve, F(x)
Quantified variable Scope of quantified variable

Every occurrence of a variable z in a formula Va.F(x) (or 3z.F(x))
is called a bound occurrence

e Occurrences which are not bound are called free

Closed formula: no free variables

[)
e Open formula: some free variables
e Ground formula: no variables

12

FOL example 1

e Fermat's Last Theorem: No three positive integers a, b, ¢ satisfy the
equation a™ 4 b = ¢" for any integer n greater than 2

e Assuming universe is integers, how do we express this theorem in
FOL using function “and predicates >, =7

13

FOL example 2

e Consider the axiom schema of unrestricted comprehension in naive
set theory:

“There exists a set whose members are precisely those objects that
satisfy predicate P

e Using predicates IsSet,c, P express this in FOL

14

FOL is very expressive, powerful and undecidable in general

Many application domains do not need the full power of FOL

First-order theories are useful for reasoning about specific
applications

e e.g., programs with arithmetic operations over integers

Specialized, efficient decision procedures

15

A First-order theory T' consists of:

e Signature X7 : set of constant, function, and predicate symbols
e Have no meaning
o Axioms Ar : set of closed formulas over X1

e Provide meaning for symbols of X1

16

Theory of Equality 7_

e Also known as theory of equality with uninterpreted functions

e Uninterpreted functions are useful as an abstraction or
over-approximation mechanism

Signature

e = binary predicate, interpreted by axioms

e all constant, function, and predicate symbols

Z::{:vaab7ca"' 7f7gvh7"‘ 7p7Qar}

17

Theory of Equality 7_

Axioms

e Vz.z==x (reflexivity)
eVr,yr=y—>y==xa (symmetry)
e Vry,z.r=yANy=z—->r=2 (transitivity)

o vxh'" s Tny Y1yttt >yn/\x2 =Y — f(xla"' ,ll?n) = f(yh 7yn)
(function congruence)

° vx17"' sy Ty Y1, >yn~/\$i =Y — (p(x17 7$n) Hp(yla 7yn))
(predicate congruence)

18

Theory of Presburger Arithmetic

e Presburger arithmetic: allows only addition over natural numbers

° EN - {0a17:a+}

Axioms (Ay)
o Vz. 2(z+1=0) (zero)
e Vr.z+0=0 (plus zero)
eVr,yr+l=y+1—=sz=y (successor)
eVr,yx+(y+1)=(z+y)+1 (plus successor)
e F[0] A (Vz.Flz] = Flz +1]) — Va.Fx] (induction)

19

Theory of Arrays

¥ 4 = {select, store}

e select(a, i) binary function that returns the value of array a at index i

e store(a,i,v) ternary function that returns an array identical to a
except that at index ¢ it has value v

Axioms

Va.Vi.Vv.(select(store(a,i,v),i) = v)

Va.ViNjNv.(i # j — select(store(a,i,v),j) = select(a, j))

20

Combination of Theories

Given

theory T3 with signature X7, and axioms Arp,

theory 15 with signature X7, and axioms Arp,
e an SMT solver for T}
an SMT solver for T,

Can we produce a solver for T} U 157

e T UT, with signature X7, U X7, and axioms Ap, U Ap,

21

Nelson-Oppen Framework

Framework for deciding combined theories under certain assumptions,
e.g, only for quantifier-free theories

Examples

e theory of arrays and bitvectors

e theory of arrays and integers

22

Reference

e Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, Cesare Tinelli:
“Satisfiability modulo theories”, In Armin Biere, Hans van Maaren,
and Toby Walsh, editors, Handbook of Satisfiability,
volume 4, chapter 8. 10S Press, 2009.

23

