

Introduction to Formal Methods

Lecture 4 Satisfiability Modulo Theories Hossein Hojjat & Fatemeh Ghassemi

October 2, 2018

Example

• Do f and g produce the same results for the same values of inputs?

1

Example

• Do f and g produce the same results for the same values of inputs?

Satisfiable iff programs non-equivalent

 $(z = y \land y_1 = x \land x_1 = z \land ret_1 = x_1 \times x_1) \land$ $(ret_2 = y \times y) \land$ $(ret_1 \neq ret_2)$

Example

• Do f and g produce the same results for the same values of inputs?

Satisfiable iff programs non-equivalent

$$\begin{aligned} &(z = y \land y_1 = x \land x_1 = z \land \mathsf{ret}_1 = x_1 \times x_1) \land \\ &(\mathsf{ret}_2 = y \times y) \land \\ &(\mathsf{ret}_1 \neq \mathsf{ret}_2) \end{aligned}$$

- We may bit-blast the formula into propositional logic (e.g. 64-bit machine)
- Problem: Bit-blasting does not scale
- For encoding multiplication we need quadratical number of clauses
- Using an SMT solver, the formula can be solved as it is

- Boolean engines such as SAT solvers are typical engines of choice for today's industrial verification applications
- However, systems are usually designed and modeled at a higher level than Boolean
- Translation to Boolean logic is simple but laborious and expensive
- A primary goal of research in Satisfiability Modulo Theories (SMT) is to create verification engines that:
 - Can reason natively at a higher level of abstraction
 - Retain the speed and automation of today's Boolean engines

Many applications naturally need features beyond propositional logic

- First-order terms: variables, constants, function symbols $f(a) = b \rightarrow g(b) = a$
- Theories: e.g. integer arithmetic, sets, floating points $n < 10 \rightarrow n \times m \leq 20$
- Quantifiers: First-order "forall" \forall and "exists" (\exists)

Growth of SMT

Is formula ϕ satisfiable modulo theory T?

 $x + 2 = y \rightarrow f(\text{select}(\text{store}(a, x, 3), y - 2)) = f(y - x + 1)$

Array Theory

Arithmetic

Uninterpreted Functions

SAT Solver

• Input:

 $a \le b \land b \le a + x \land x = 0 \land \left(f(a) \ne f(b) \lor (q(a) \land \neg q(b+x))\right)$

SAT Solver

• Input:

 $a \le b \land b \le a + x \land x = 0 \land (f(a) \ne f(b) \lor (q(a) \land \neg q(b + x)))$

• To SAT solver:

 $p_{a \leq b} \land p_{b \leq a+x} \land p_{x=0} \land \left(\neg p_{f(a)=f(b)} \lor \left(p_{q(a)} \land \neg p_{q(b+x)}\right)\right)$

• Input:

 $a \le b \land b \le a + x \land x = 0 \land \left(f(a) \ne f(b) \lor (q(a) \land \neg q(b + x))\right)$

• To SAT solver:

 $p_{a \leq b} \land p_{b \leq a+x} \land p_{x=0} \land \left(\neg p_{f(a)=f(b)} \lor \left(p_{q(a)} \land \neg p_{q(b+x)}\right)\right)$

• Boolean model: $p_{a \le b}, p_{b \le a+x}, p_{x=0}, \neg p_{f(a)=f(b)}$

Input:

 $a \leq b \wedge b \leq a + x \wedge x = 0 \wedge \left(f(a) \neq f(b) \lor (q(a) \land \neg q(b + x))\right)$

• To SAT solver:

 $p_{a \leq b} \wedge p_{b \leq a+x} \wedge p_{x=0} \wedge \left(\neg p_{f(a)=f(b)} \vee \left(p_{q(a)} \wedge \neg p_{q(b+x)}\right)\right)$

- Boolean model: $p_{a \le b}, p_{b \le a+x}, p_{x=0}, \neg p_{f(a)=f(b)}$
- Theory reasoner: $a \le b, b \le a + x, x = 0, f(a) \ne f(b)$

Input:

 $a \leq b \wedge b \leq a + x \wedge x = 0 \wedge \left(f(a) \neq f(b) \lor (q(a) \land \neg q(b + x))\right)$

• To SAT solver:

 $p_{a \le b} \land p_{b \le a+x} \land p_{x=0} \land \left(\neg p_{f(a)=f(b)} \lor \left(p_{q(a)} \land \neg p_{q(b+x)}\right)\right)$

- Boolean model: $p_{a \le b}, p_{b \le a+x}, p_{x=0}, \neg p_{f(a)=f(b)}$
- Theory reasoner: $a \le b, b \le a + x, x = 0, f(a) \ne f(b)$ unsatisfiable

• Input:

 $a \leq b \wedge b \leq a + x \wedge x = 0 \wedge \left(f(a) \neq f(b) \lor (q(a) \land \neg q(b + x))\right)$

• To SAT solver:

 $p_{a \le b} \land p_{b \le a+x} \land p_{x=0} \land \left(\neg p_{f(a)=f(b)} \lor \left(p_{q(a)} \land \neg p_{q(b+x)}\right)\right)$

- Boolean model: $p_{a \leq b}, p_{b \leq a+x}, p_{x=0}, \neg p_{f(a)=f(b)}$
- Theory reasoner: $a \le b, b \le a + x, x = 0, f(a) \ne f(b)$ unsatisfiable

• New clause:
$$\neg p_{a \leq b} \lor \neg p_{b \leq a+x} \lor \neg p_{x=0} \lor p_{f(a)=f(b)}$$

From SAT to SMT

Input:

 $a \le b \land b \le a + x \land x = 0 \land (f(a) \ne f(b) \lor (q(a) \land \neg q(b + x)))$

To SAT solver:

 $p_{a < b} \land p_{b < a+x} \land p_{x=0} \land \left(\neg p_{f(a)=f(b)} \lor \left(p_{q(a)} \land \neg p_{q(b+x)}\right)\right)$

- Boolean model: $p_{a < b}, p_{b < a+x}, p_{x=0}, \neg p_{f(a)=f(b)}$
- Theory reasoner: $a \le b, b \le a + x, x = 0, f(a) \ne f(b)$ unsatisfiable

 New clause: $\neg p_a < b \lor \neg p_b < a+x \lor \neg p_x = 0 \lor p_f(a) = f(b)$

- SMT-LIB is a language for specifying input to SMT solvers
- Basic instructions:

```
(declare-fun x () Int)
(assert (> x 0))
(check-sat)
```

(get-model)

declare an integer constant xadd x > 0 to known facts check if there exist an assignment that makes all known facts true print this assignment

http://rise4fun.com/z3

samples
smtc_arith
doc_examples

about Z3 - Efficient Theorem Prover

Z3 is a high-performance theorem prover. Z3 supports arithmetic, fixed-size bitvectors, extensional arrays, datatypes, uninterpreted functions, and quantifiers.

- Language of SAT solvers is Boolean logic
- Language of SMT solvers is First-Order Logic (FOL)
- FOL includes the Boolean operations of Boolean logic, instead of propositional variables, more complicated expressions are allowed
- A first-order language must specify its signature: the set of constant, function, and predicate symbols that are allowed
- Each predicate and function symbol has an associated arity: natural number indicating how many arguments it takes
 - Equality is a special predicate symbol of arity 2
 - Constant symbols can also be thought of as functions whose arity is 0

Propositional Logic

- Predicate symbols: x_1, x_2, \dots
- Constant symbols: none
- Function symbols: none

Elementary Number Theory

- Predicate symbols: <
- Constant symbols: 0
- Function symbols: S (successor), +, imes

Terms

- Variables and constants are terms
- For each function symbol f of arity n, and terms t_1, \ldots, t_n , $f(t_1, \cdots, t_n)$ is a term
- Atom: an expression of the form: $P(t_1, \dots, t_n)$ where P is a predicate symbol of arity n and t_1, \dots, t_n are terms
- An atom or its negation is called a literal
- Formulas are built from literals using the Boolean operators and quantification

Quantifiers

existential quantifier: universal quantifier: $\exists x.F(x) \text{ ``there exists an } x \text{ such that } F(x) \text{'`} \\ \forall x.F(x) \text{ ``for all } x, F(x) \text{''} \\ \end{cases}$

- Every occurrence of a variable x in a formula ∀x.F(x) (or ∃x.F(x)) is called a bound occurrence
- Occurrences which are not bound are called free
- Closed formula: no free variables
- Open formula: some free variables
- Ground formula: no variables

- Fermat's Last Theorem: No three positive integers a, b, c satisfy the equation $a^n + b^n = c^n$ for any integer n greater than 2
- Assuming universe is integers, how do we express this theorem in FOL using function and predicates >, =?

• Consider the axiom schema of unrestricted comprehension in naive set theory:

"There exists a set whose members are precisely those objects that satisfy predicate P"

• Using predicates $IsSet \in , P$ express this in FOL

- FOL is very expressive, powerful and undecidable in general
- Many application domains do not need the full power of FOL
- First-order theories are useful for reasoning about specific applications
 - e.g., programs with arithmetic operations over integers
- Specialized, efficient decision procedures

A First-order theory T consists of:

- Signature Σ_T : set of constant, function, and predicate symbols
 - Have no meaning
- Axioms A_T : set of closed formulas over Σ_T
 - Provide meaning for symbols of Σ_T

- Also known as theory of equality with uninterpreted functions
- Uninterpreted functions are useful as an abstraction or over-approximation mechanism

Signature

- \bullet = binary predicate, interpreted by axioms
- all constant, function, and predicate symbols

$$\Sigma_{=} = \{=, a, b, c, \cdots, f, g, h, \cdots, p, q, r\}$$

Axioms

• $\forall x. \ x = x$ (reflexivity) • $\forall x, y. \ x = y \rightarrow y = x$ (symmetry) • $\forall x, y, z. \ x = y \land y = z \rightarrow x = z$ (transitivity) • $\forall x_1, \dots, x_n, y_1, \dots, y_n. \land x_i = y_i \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$ (function congruence) • $\forall x_1, \dots, x_n, y_1, \dots, y_n. \land x_i = y_i \rightarrow (p(x_1, \dots, x_n) \leftrightarrow p(y_1, \dots, y_n))$

(predicate congruence)

- Presburger arithmetic: allows only addition over natural numbers
- $\Sigma_{\mathbb{N}} = \{0, 1, =, +\}$

Axioms ($A_{\mathbb{N}}$)

- $\forall x. \ \neg(x+1=0)$ (zet
- $\forall x. \ x + 0 = 0$
- $\forall x, y. \ x+1 = y+1 \rightarrow x = y$
- $\forall x, y. \ x + (y+1) = (x+y) + 1$
- $F[0] \land (\forall x.F[x] \to F[x+1]) \to \forall x.F[x]$

(zero)
(plus zero)
(successor)
(plus successor)
(induction)

 $\Sigma_A = \{ select, store \}$

- $\mathit{select}(a,i)$ binary function that returns the value of array a at index i
- store(a, i, v) ternary function that returns an array identical to a except that at index i it has value v

Axioms

 $\begin{aligned} \forall a. \forall i. \forall v. (select(store(a, i, v), i) = v) \\ \forall a. \forall i. \forall j. \forall v. (i \neq j \rightarrow select(store(a, i, v), j) = select(a, j)) \end{aligned}$

Given

- theory T_1 with signature Σ_{T_1} and axioms A_{T_1}
- theory T_2 with signature Σ_{T_2} and axioms A_{T_2}
- an SMT solver for T_1
- $\bullet\,$ an SMT solver for T_2

Can we produce a solver for $T_1 \cup T_2$?

• $T_1 \cup T_2$ with signature $\Sigma_{T_1} \cup \Sigma_{T_2}$ and axioms $A_{T_1} \cup A_{T_2}$

Framework for deciding combined theories under certain assumptions, e.g. only for quantifier-free theories

Examples

- theory of arrays and bitvectors
- theory of arrays and integers

 Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, Cesare Tinelli: "Satisfiability modulo theories", In Armin Biere, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume 4, chapter 8. IOS Press, 2009.