
Introduction to Formal Methods

Lecture 4

Satis�ability Modulo Theories

Hossein Hojjat & Fatemeh Ghassemi

October 2, 2018

Example

• Do f and g produce the same results for the same values of inputs?

Satis�able i� programs

non-equivalent

(z = y ∧ y1 = x ∧ x1 = z ∧ ret1 = x1 × x1)∧
(ret2 = y × y)∧
(ret1 6= ret2)

• We may bit-blast the formula into propositional logic

(e.g. 64-bit machine)

• Problem: Bit-blasting does not scale

• For encoding multiplication we need quadratical number of clauses

• Using an SMT solver, the formula can be solved as it is

int f(int y) {
int x, z;
z = y;
y = x;
x = z;
return x ∗ x;

}

int g(int x) {
return x ∗ x;

}

1

Example

• Do f and g produce the same results for the same values of inputs?

Satis�able i� programs

non-equivalent

(z = y ∧ y1 = x ∧ x1 = z ∧ ret1 = x1 × x1)∧
(ret2 = y × y)∧
(ret1 6= ret2)

• We may bit-blast the formula into propositional logic

(e.g. 64-bit machine)

• Problem: Bit-blasting does not scale

• For encoding multiplication we need quadratical number of clauses

• Using an SMT solver, the formula can be solved as it is

int f(int y) {
int x, z;
z = y;
y = x;
x = z;
return x ∗ x;

}

int g(int x) {
return x ∗ x;

}

1

Example

• Do f and g produce the same results for the same values of inputs?

Satis�able i� programs

non-equivalent

(z = y ∧ y1 = x ∧ x1 = z ∧ ret1 = x1 × x1)∧
(ret2 = y × y)∧
(ret1 6= ret2)

• We may bit-blast the formula into propositional logic

(e.g. 64-bit machine)

• Problem: Bit-blasting does not scale

• For encoding multiplication we need quadratical number of clauses

• Using an SMT solver, the formula can be solved as it is

int f(int y) {
int x, z;
z = y;
y = x;
x = z;
return x ∗ x;

}

int g(int x) {
return x ∗ x;

}

1

Motivation

• Boolean engines such as SAT solvers are typical engines of choice for

today's industrial veri�cation applications

• However, systems are usually designed and modeled at a higher level

than Boolean

• Translation to Boolean logic is simple but laborious and expensive

• A primary goal of research in Satis�ability Modulo Theories (SMT)

is to create veri�cation engines that:

- Can reason natively at a higher level of abstraction

- Retain the speed and automation of today's Boolean engines

2

Motivation

Many applications naturally need features beyond propositional logic

• First-order terms: variables, constants, function symbols

f(a) = b→ g(b) = a

• Theories: e.g. integer arithmetic, sets, �oating points

n < 10→ n×m ≤ 20

• Quanti�ers: First-order �forall� ∀ and �exists� (∃)

3

Growth of SMT

2008 2010 2012 2014 2016
0

500

1,000

1,500

2,000

Articles per year by search phrase (from Google Scholar)

"SMT Solver"

4

Satis�ability Modulo Theories (SMT)

Is formula φ satis�able modulo theory T?

x+ 2 = y→f (select (store (a, x,3),y − 2)) =f (y − x+ 1)

Array Theory Arithmetic Uninterpreted Functions

5

From SAT to SMT

SAT Solver

• Input:

a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
(
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

)

• To SAT solver:

pa≤b ∧ pb≤a+x ∧ px=0 ∧
(
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

)
• Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

• Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b)

• New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

6

From SAT to SMT

SAT Solver

• Input:

a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
(
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

)
• To SAT solver:

pa≤b ∧ pb≤a+x ∧ px=0 ∧
(
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

)

• Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

• Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b)

• New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

6

From SAT to SMT

SAT Solver

Boolean Model

• Input:

a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
(
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

)
• To SAT solver:

pa≤b ∧ pb≤a+x ∧ px=0 ∧
(
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

)
• Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

• Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b)

• New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

6

From SAT to SMT

SAT Solver
Theory

Reasoner

Boolean Model

• Input:

a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
(
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

)
• To SAT solver:

pa≤b ∧ pb≤a+x ∧ px=0 ∧
(
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

)
• Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

• Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b)

• New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

6

From SAT to SMT

SAT Solver
Theory

Reasoner

Boolean Model

• Input:

a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
(
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

)
• To SAT solver:

pa≤b ∧ pb≤a+x ∧ px=0 ∧
(
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

)
• Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

• Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b)

unsatis�able

• New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)

6

From SAT to SMT

SAT Solver
Theory

Reasoner

Conflict Clause

Boolean Model

• Input:

a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
(
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

)
• To SAT solver:

pa≤b ∧ pb≤a+x ∧ px=0 ∧
(
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

)
• Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

• Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b)

unsatis�able

• New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)
6

From SAT to SMT

SMT Solver

SAT Solver
Theory

Reasoner

Conflict Clause

Boolean Model

• Input:

a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
(
f(a) 6= f(b) ∨ (q(a) ∧ ¬q(b+ x))

)
• To SAT solver:

pa≤b ∧ pb≤a+x ∧ px=0 ∧
(
¬pf(a)=f(b) ∨ (pq(a) ∧ ¬pq(b+x))

)
• Boolean model: pa≤b, pb≤a+x, px=0,¬pf(a)=f(b)

• Theory reasoner: a ≤ b, b ≤ a+ x, x = 0, f(a) 6= f(b)

unsatis�able

• New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf(a)=f(b)
6

SMT-LIB

• SMT-LIB is a language for specifying input to SMT solvers

• Basic instructions:

(declare-fun x () Int) declare an integer constant x

(assert (> x 0)) add x > 0 to known facts

(check-sat) check if there exist an assignment

that makes all known facts true

(get-model) print this assignment

7

http://rise4fun.com/z3

8

http://rise4fun.com/z3

SMT Solvers: Language

• Language of SAT solvers is Boolean logic

• Language of SMT solvers is First-Order Logic (FOL)

• FOL includes the Boolean operations of Boolean logic, instead of

propositional variables, more complicated expressions are allowed

• A �rst-order language must specify its signature: the set of

constant, function, and predicate symbols that are allowed

• Each predicate and function symbol has an associated arity:

natural number indicating how many arguments it takes

- Equality is a special predicate symbol of arity 2

- Constant symbols can also be thought of as functions whose arity is 0

9

First-Order Languages: Examples

Propositional Logic

• Predicate symbols: x1,x2,...

• Constant symbols: none

• Function symbols: none

Elementary Number Theory

• Predicate symbols: <

• Constant symbols: 0

• Function symbols: S (successor), +, ×

10

First-Order Logic: Syntax

Terms

• Variables and constants are terms

• For each function symbol f of arity n, and terms t1,...,tn,

f(t1, · · · , tn) is a term

• Atom: an expression of the form: P (t1, · · · , tn) where P is a

predicate symbol of arity n and t1, · · · , tn are terms

• An atom or its negation is called a literal

• Formulas are built from literals using the Boolean operators and

quanti�cation

11

Quanti�ers

existential quanti�er:

universal quanti�er:

∃x.F (x) �there exists an x such that F (x)�

∀x.F (x) �for all x, F (x)�

∀x. F (x)

Quanti�ed variable Scope of quanti�ed variable

• Every occurrence of a variable x in a formula ∀x.F (x) (or ∃x.F (x))

is called a bound occurrence

• Occurrences which are not bound are called free

• Closed formula: no free variables

• Open formula: some free variables

• Ground formula: no variables

12

FOL example 1

• Fermat's Last Theorem: No three positive integers a, b, c satisfy the

equation an + bn = cn for any integer n greater than 2

• Assuming universe is integers, how do we express this theorem in

FOL using functionˆand predicates >, =?

13

FOL example 2

• Consider the axiom schema of unrestricted comprehension in naive

set theory:

�There exists a set whose members are precisely those objects that

satisfy predicate P �

• Using predicates IsSet,∈, P express this in FOL

14

Theory

• FOL is very expressive, powerful and undecidable in general

• Many application domains do not need the full power of FOL

• First-order theories are useful for reasoning about speci�c

applications

• e.g., programs with arithmetic operations over integers

• Specialized, e�cient decision procedures

15

Theory

A First-order theory T consists of:

• Signature ΣT : set of constant, function, and predicate symbols

• Have no meaning

• Axioms AT : set of closed formulas over ΣT

• Provide meaning for symbols of ΣT

16

Theory of Equality T=

• Also known as theory of equality with uninterpreted functions

• Uninterpreted functions are useful as an abstraction or

over-approximation mechanism

Signature

• = binary predicate, interpreted by axioms

• all constant, function, and predicate symbols

Σ= = {=, a, b, c, · · · , f, g, h, · · · , p, q, r}

17

Theory of Equality T=

Axioms

• ∀x. x = x (re�exivity)

• ∀x, y. x = y → y = x (symmetry)

• ∀x, y, z. x = y ∧ y = z → x = z (transitivity)

• ∀x1, · · · , xn, y1, · · · , yn.
∧
xi = yi → f(x1, · · · , xn) = f(y1, · · · , yn)

(function congruence)

• ∀x1, · · · , xn, y1, · · · , yn.
∧
xi = yi → (p(x1, · · · , xn)↔ p(y1, · · · , yn))

(predicate congruence)

18

Theory of Presburger Arithmetic

• Presburger arithmetic: allows only addition over natural numbers

• ΣN = {0, 1,=,+}

Axioms (AN)

• ∀x. ¬(x+ 1 = 0) (zero)

• ∀x. x+ 0 = 0 (plus zero)

• ∀x, y. x+ 1 = y + 1→ x = y (successor)

• ∀x, y. x+ (y + 1) = (x+ y) + 1 (plus successor)

• F [0] ∧ (∀x.F [x]→ F [x+ 1])→ ∀x.F [x] (induction)

19

Theory of Arrays

ΣA = {select, store}

• select(a, i) binary function that returns the value of array a at index i

• store(a, i, v) ternary function that returns an array identical to a

except that at index i it has value v

Axioms

∀a.∀i.∀v.(select(store(a, i, v), i) = v)

∀a.∀i.∀j.∀v.(i 6= j → select(store(a, i, v), j) = select(a, j))

20

Combination of Theories

Given

• theory T1 with signature ΣT1
and axioms AT1

• theory T2 with signature ΣT2
and axioms AT2

• an SMT solver for T1

• an SMT solver for T2

Can we produce a solver for T1 ∪ T2?

• T1 ∪ T2 with signature ΣT1 ∪ ΣT2 and axioms AT1 ∪AT2

21

Nelson-Oppen Framework

Framework for deciding combined theories under certain assumptions,

e.g, only for quanti�er-free theories

Examples

• theory of arrays and bitvectors

• theory of arrays and integers

22

Reference

• Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, Cesare Tinelli:

�Satis�ability modulo theories�, In Armin Biere, Hans van Maaren,

and Toby Walsh, editors, Handbook of Satis�ability,

volume 4, chapter 8. IOS Press, 2009.

23

