
Introduction to Formal Methods

Lecture 5

From Programs to Formulas

Hossein Hojjat & Fatemeh Ghassemi

October 7, 2018

Veri�cation-Condition Generation

Annotated

Program

VCG

Veri�cation

Condition

Theorem Prover

(CVC4, Z3, ...)

valid program

satis�es property

invalid program

Steps in Veri�cation

• Generate formula whose validity implies

correctness of program

• Attempt to prove formula

• If formula is valid, program is correct

• If formula has a counterexample,

it indicates one of these:

• error in the program

• error in the property

• error in auxiliary statements

(e.g. loop invariants)

Terminology

• Generated formulas:

veri�cation conditions

• Generation process:

veri�cation-condition generation

• Program that generates formulas:

Veri�cation-Condition Generator(VCG)
1

Validity and Satis�ability

F (x) : formula with free variable(x) x

General Situation:

x

F

• •
•
•
•
• •false

true

x1 x2 x3 x4 x5 x6 · · ·

Valid:

x

F
• • • • • • •

false

true

∀x.F (x)

Invalid:

x

F
• • •

•
• • •

false

true

¬∀x.F (x)

counter-example

Unsatis�able:

x

F

• • • • • • •false

true

¬∃x.F (x)

Satis�able:

x

F

• • •
•
• • •false

true

∃x.F (x)

satisfying
assignment

F is valid⇔ F is unsatis�able

F is invalid⇔ F is satis�able
2

Veri�cation Condition Generation Example

We examine algorithms for going from programs to their veri�cation

conditions
if (x > 0)

res = x ∗ 2 + 1;
else

res = 24;
assert (res > 0);

For the following formula, we check validity:

all variables are universally quanti�ed

((
(x > 0) ∧ (res = 2x+ 1)

)
∨
(
¬(x > 0) ∧ (res = 24)

))
→ (res > 0)

3

Simple Programming Language

x = T
if (F) c1 else c2
c1 ; c2
while (F) c1

ordinary control structure

terms like in Integer arithmetic Boolean formulas without quanti�ers

c ::= x = T | (if (F) c else c) | c; c | (while (F) c)

T ::= K | V | (T + T) | (T − T) | (K ∗ T) | (T/K) | (T%K)

F ::= (T == T) | (T < T) | (T > T) | (F) | (F&&F) | (F ||F)

V ::= x | y | z | · · ·
K ::= 0 | 1 | 2 | · · ·

4

Collatz Conjecture

Prove this program always terminates for any natural number x:

while (x > 1) {
if (x % 2 == 0) x = x / 2;

else x = 3∗x+1;
}

�Mathematics is not yet ripe for such problems� -Paul Erdös

5

Remark: Turing-Completeness

• This language is Turing-complete

• Every possible program (Turing machine) can be encoded into

computation on integers (computed integers can become very large)

• Problem of taking a program and checking whether it terminates is

undecidable

• Rice's Theorem: all properties of programs that are expressed in

terms of the results that the programs compute (and not in terms of

the structure of programs) are undecidable

6

Remark: Turing-Completeness

In real programming languages we have bounded integers, but we have

other sources of unboundedness, e.g.

• BigInt data type of Java and Scala

(sequence of digits of any length)

• example: sizes of linked lists and of other data structure

• Program syntax trees for an interpreter or compiler

(we would like to handle programs of any size)

7

What is Decidable

• Checking satis�ability of Presburger arithmetic formulas (even with

quanti�ers) is decidable

• Checking if there exists an input to a program in our language for

which program computes a given value (e.g. 1) is undecidable

• Quanti�ers in Presburger arithmetic cannot be used to de�ne

z=x*y

• But we can write a program that computes x*z and stores it in z

• Programs without loops can be translated into Presburger arithmetic

• Loops give much more expressive power to Presburger arithmetic

than quanti�ers

(situation can be di�erent if we did not work with Presburger

arithmetic)

8

VC Generation for Programs

• Program can be represented by a formula relating initial and �nal state

• Consider program with variables x, y, z

program: x = x + 2; y = x + 12

relation: {(x, y, z, x′, y′, z′) | x′ = x+ 2 ∧ y′ = x′ + 12 ∧ z′ = z}
formula: x′ = x+ 2 ∧ y′ = x′ + 12 ∧ z′ = z

9

Examples

Relation between initial and all possible �nal states

x = x + 3;
x = x + 2;

{(x, x′) | x′ = x+ 5}

x = x + x; {(x, x′) | x′ = 2x}

while (x != 10) {
x = x + 1;

}

{(x, x′) | x ≤ 10 ∧ x′ = 10}

while (5 == 5) {
x = x;

}

∅

10

Why Relations

The meaning is, in general, an arbitrary relation. Therefore:

• For certain states there will be no results

• In particular, if a computation starting at a state does not terminate

• For certain states there will be multiple results

• This means execution starting in a state will sometimes compute one

and sometimes other result

• Veri�cation of such program must account for both possibilities

• Multiple results are important for modeling e.g. concurrency, as well

as approximating behavior that we do not know

(e.g. what the operating system or environment will do, or what the

result of complex computation is)

11

Example of Non-Determinism

x = randomInteger ()
if (x > 10) {

y = y+1
} else {

y = y+2
}

• Relation between the initial and the �nal y:

{(y, y′) | (y′ = y + 1 ∨ y′ = y + 2)} =

{· · · , (100, 101), (100, 102), (101, 102), (101, 103), · · · }

• obviously, not a function

12

Relations

• Cartesian product: A×B = {(x, y) | x ∈ A ∧ y ∈ B}
• Relation r ⊆ A×B
• Diagonal relation: ∆A = {(x, x)|x ∈ A}
• Partial function f : A ↪→ B

∀x ∈ A, y1 ∈ B, y2 ∈ B.(x, y1) ∈ f ∧ (x, y2) ∈ f → y1 = y2

• Partial function is total i�

∀x ∈ A.∃y ∈ B.(x, y) ∈ r

• Function f : A→ B when f is partial function and total on A×B

13

Function Updates

dom(r) = {x | ∃y.(x, y) ∈ r} domain

ran(r) = {y | ∃x.(x, y) ∈ r} range

• f : A ↪→ B, g :↪→ B

f ⊕ g =
{

(x, y) |
(
(x, y) ∈ f ∧ x 6∈ dom(g)

)
∨ (x, y) ∈ g

}
• f [x := v] means f ⊕ {(x, v)}

(f [x := v])(y) =

{
v if y = x

f(y) if y 6= x

14

A Simple Property

Relation Composition: t ◦ r = {(x, z) | ∃y.(x, y) ∈ t ∧ (y, z) ∈ r}
Relation Image: S • r = {y | ∃x ∈ S.(x, y) ∈ r}

Theorem. For r ⊆ A×A and S ⊆ A

S • r = ran(∆S ◦ r)

15

Transitive Closure

r ⊆ A2

r0 = ∆A

r1 = r ◦∆A = r

rn+1 = r ◦ rn = rn ◦ r

r∗ =
⋃
i≥0

ri = ∆A ∪ r ∪ r2 ∪ · · ·

Theorem.

⋂
{S | ∆A ∪ S ◦ r ⊆ S} = r∗

(r∗ is the least S satisfying the recursive condition)

16

Guarded Command Language

assume(F) block all executions where F does not hold

s1 ; s2 do �rst s1, then s2

s1 [] s2 do either s1 or s2 arbitrarily

s* execute s zero, once, or more times

17

Formula that Describe Relations

• c imperative command

• R(c) formula describing relation between initial and �nal states of

execution of c

• If ρ(c) describes the relation, then R(c) is formula such that

ρ(c) = {(~v, ~v′) | R(c)}

• R(c) is a formula between unprimed variables ~v and primed variables ~v′

18

Formula for Assignment

x = t

R(x = t):

x′ = t ∧
∧

v∈V \{x}

v = v′

• Note that the formula must explicitly state which variables remain

the same (here: all except x)

• Otherwise, those variables would not be constrained by the relation,

so they could take arbitrary value in the state after the command

19

Formula for Assignment

x = t

R(x = t):

x′ = t ∧
∧

v∈V \{x}

v = v′

• Note that the formula must explicitly state which variables remain

the same (here: all except x)

• Otherwise, those variables would not be constrained by the relation,

so they could take arbitrary value in the state after the command

19

assume

assume(F)

R(assume(F)):

F ∧
∧
v∈V

v = v′

ρ(assume(F)):

∆S(F)

where S(F) = {~v | F}

20

assume

assume(F)

R(assume(F)):

F ∧
∧
v∈V

v = v′

ρ(assume(F)):

∆S(F)

where S(F) = {~v | F}

20

Non-deterministic Choice

c1 8 c2

R(c1 8 c2):

R(c1) ∨R(c2)

ρ(c1 8 c2):

ρ(c1) ∪ ρ(c2)

• translation is simply a disjunction - this is why construct is

interesting

• corresponds to branching in control-�ow graphs

21

Non-deterministic Choice

c1 8 c2

R(c1 8 c2):

R(c1) ∨R(c2)

ρ(c1 8 c2):

ρ(c1) ∪ ρ(c2)

• translation is simply a disjunction - this is why construct is

interesting

• corresponds to branching in control-�ow graphs

21

Sequential Commands

c1; c2

Reminder about relation composition and its de�nition:

r1 ◦ r2 = {(a, c) | ∃b.(a, b) ∈ r1 ∧ (b, c) ∈ r2}

What are R(c1) and R(c2) and in terms of which variables they are

expressed?

R(c1; c2):

∃~z.R(c1)[~x′ := ~z] ∧R(c2)[~x := ~z]

where ~z are freshly picked names of intermediate states

22

Sequential Commands

c1; c2

Reminder about relation composition and its de�nition:

r1 ◦ r2 = {(a, c) | ∃b.(a, b) ∈ r1 ∧ (b, c) ∈ r2}

What are R(c1) and R(c2) and in terms of which variables they are

expressed?

R(c1; c2):

∃~z.R(c1)[~x′ := ~z] ∧R(c2)[~x := ~z]

where ~z are freshly picked names of intermediate states

22

if condition

if (F)
s1

else
s2

(assume(F); s1)

8

(assume(¬F); s2)

[f] [¬f]

s1 s2

23

Example: Absolute Value

if (x > 0)
y = x;

else
y = −x;

24

One-Point Rule

• Assignments and assume statements generate equalities, many of

which can be eliminated by one-point rule

(∃x.x = t ∧ F)↔ F [x := t]

• There are more complex quanti�er elimination procedures that can

be used in principle as well

25

Towards meaning of loops: unfolding

Loops can describe an in�nite number of basic paths

Consider loop

L ≡ while(F)c

We would like to have

L ≡ if(F)(c;L)

≡ if(F)(c; if(F)(c;L))

For rL = ρ(L),rc = ρ(c),∆f = ∆S(F),∆nf = ∆S(¬F) we have

rL = (∆f ◦ rc ◦ rL) ∪∆nf

= (∆f ◦ rc ◦ ((∆f ◦ rc ◦ rL) ∪∆nf)) ∪∆nf

= ∆nf ∪
(∆f ◦ rc) ◦∆nf ∪
(∆f ◦ rc)2 ◦ rL

26

Unfolding Loops

rL = ∆nf ∪
(∆f ◦ rc) ◦∆nf ∪
(∆f ◦ rc)2 ◦∆nf ∪
(∆f ◦ rc)3 ◦ rL

We prove by induction that for every n ≥ 0,

(∆f ◦ rc)n ◦∆nf ⊆ rL

So, (∆f ◦ rc) ∗ ◦∆nf ⊆ rL

We de�ne rL to be

rL = (∆f ◦ rc) ∗ ◦∆nf

Therefore

ρ(while(F)c) = (∆S(F) ◦ ρ(c)) ∗ ◦∆S(¬F)
27

While

while (F)
s

(assume(F); s) ∗ ;

(assume(¬F))

[f]

[¬f]
s

28

While

int x = 0;
while (x < 2)

x = x + 1;
(x = 0) ∨
(x = 0 ∧ x < 2 ∧ x1 = x+ 1) ∨
(x = 0 ∧ x < 2 ∧ x1 = x+ 1 ∧ x1 < 2 ∧ x2 = x1 + 1)∨
(x = 0 ∧ x < 2 ∧ x1 = x+ 1 ∧ x1 < 2 ∧ x2 = x1 + 1 ∧ x2 < 2 ∧ x3 = x2 + 1) ∨
...

...
...

...

 .

;
x ≥ 2

x′ = 2

29

While

int x = 0;
while (x < 2)

x = x + 1;
(x = 0) ∨
(x = 0 ∧ x < 2 ∧ x1 = x+ 1) ∨
(x = 0 ∧ x < 2 ∧ x1 = x+ 1 ∧ x1 < 2 ∧ x2 = x1 + 1)∨
(x = 0 ∧ x < 2 ∧ x1 = x+ 1 ∧ x1 < 2 ∧ x2 = x1 + 1 ∧ x2 < 2 ∧ x3 = x2 + 1) ∨
...

...
...

...

 .

;
x ≥ 2

x′ = 2

29

While

int x = 0;
while (x < 2)

x = x + 1;
(x = 0) ∨
(x = 0 ∧ x < 2 ∧ x1 = x+ 1) ∨
(x = 0 ∧ x < 2 ∧ x1 = x+ 1 ∧ x1 < 2 ∧ x2 = x1 + 1)

(x = 0 ∧ x < 2 ∧ x1 = x+ 1 ∧ x1 < 2 ∧ x2 = x1 + 1 ∧ x2 < 2 ∧ x3 = x2 + 1) ∨
...

...
...

...

 .

;
x ≥ 2

x′ = 2

29

While

int x = 0;
while (x < 2)

x = x + 1;
(x = 0 ∧ x ≥ 2) ∨
(x = 0 ∧ x < 2 ∧ x1 = x+ 1 ∧ x1 ≥ 2) ∨
(x = 0 ∧ x < 2 ∧ x1 = x+ 1 ∧ x1 < 2 ∧ x2 = x1 + 1 ∧ x2 ≥ 2)

(x = 0 ∧ x < 2 ∧ x1 = x+ 1 ∧ x1 < 2 ∧ x2 = x1 + 1 ∧ x2 < 2 ∧ x3 = x2 + 1) ∨
...

...
...

...

 .

;
x ≥ 2

x′ = 2

29

While

int x = 0;
while (x < 2)

x = x + 1;
(x = 0 ∧ x ≥ 2) ∨
(x = 0 ∧ x < 2 ∧ x1 = x+ 1 ∧ x1 ≥ 2) ∨
(x = 0 ∧ x < 2 ∧ x1 = x+ 1 ∧ x1 < 2 ∧ x2 = x1 + 1 ∧ x2 ≥ 2)

(x = 0 ∧ x < 2 ∧ x1 = x+ 1 ∧ x1 < 2 ∧ x2 = x1 + 1 ∧ x2 < 2 ∧ x3 = x2 + 1) ∨
...

...
...

...

 .

;
x ≥ 2

x′ = 2

29

While

int x = 0;
while (x < 2)

x = x + 1;
(x = 0 ∧ x ≥ 2) ∨
(x = 0 ∧ x < 2 ∧ x1 = x+ 1 ∧ x1 ≥ 2) ∨
(x = 0 ∧ x < 2 ∧ x1 = x+ 1 ∧ x1 < 2 ∧ x2 = x1 + 1 ∧ x2 ≥ 2)

(x = 0 ∧ x < 2 ∧ x1 = x+ 1 ∧ x1 < 2 ∧ x2 = x1 + 1 ∧ x2 < 2 ∧ x3 = x2 + 1) ∨
...

...
...

...

 .

;
x ≥ 2

x′ = 2

29

Havoc Statement

• Change a given variable arbitrarily

R(havoc(x)) = {(x, y, z, x′, y′, z′) | y′ = y ∧ z′ = z}

• We can prove that the following equality holds when x does not

occur in E

x = E is havoc(x); assume(x=E)

• In other words, assigning a variable is the same as changing it

arbitrarily and then assuming that it has the right value

30

