
Introduction to Formal Methods

Lecture 7

Hoare Logic Rules

Hossein Hojjat & Fatemeh Ghassemi

October 14, 2018

Review of Key De�nitions

Hoare triple:

{P} r {Q} ⇔ ∀s, s′ ∈ S.
(
(s ∈ P ∧ (s, s′) ∈ r)→ s′ ∈ Q

)
{P} does not denote a singleton set containing P but is just a notation

for an �assertion� around a command. Likewise for {Q}.

Strongest postcondition:

sp(P, r) = {s′ | ∃s.s ∈ P ∧ (s, s′) ∈ r}

Weakest precondition:

wp(r,Q) = {s | ∀s′.(s, s′) ∈ r → s′ ∈ Q}

1

Exercise: Prove wp Distributivity

wp(r1 ∪ r2, Q) = wp(r1, Q) ∩ wp(r2, Q)

wp(r1 ∪ r2, Q) = {s | ∀s′.(s, s′) ∈ r1 ∪ r2 → s′ ∈ Q}
= {s | ∀s′.((s, s′) ∈ r1 ∨ (s, s′) ∈ r2)→ s′ ∈ Q}
= {s | ∀s′.¬((s, s′) ∈ r1 ∨ (s, s′) ∈ r2) ∨ s′ ∈ Q}
= {s | ∀s′.(¬(s, s′) ∈ r1 ∧ ¬(s, s′) ∈ r2) ∨ s′ ∈ Q}
= {s | ∀s′.(¬(s, s′) ∈ r1 ∨ s′ ∈ Q) ∧ (¬(s, s′) ∈ r2 ∨ s′ ∈ Q)}
= {s | ∀s′.((s, s′) ∈ r1 → s′ ∈ Q) ∧ ((s, s′) ∈ r2 → s′ ∈ Q)}
= {s | (∀s′.(s, s′) ∈ r1 → s′ ∈ Q) ∧ (∀s′.(s, s′) ∈ r2 → s′ ∈ Q)}
= {s | ∀s′.(s, s′) ∈ r1 → s′ ∈ Q} ∩ {s | ∀s′.(s, s′) ∈ r2 → s′ ∈ Q}
= wp(r1, Q) ∩ wp(r2, Q)

2

Exercise: Prove wp Distributivity

wp(r1 ∪ r2, Q) = wp(r1, Q) ∩ wp(r2, Q)

wp(r1 ∪ r2, Q) = {s | ∀s′.(s, s′) ∈ r1 ∪ r2 → s′ ∈ Q}
= {s | ∀s′.((s, s′) ∈ r1 ∨ (s, s′) ∈ r2)→ s′ ∈ Q}
= {s | ∀s′.¬((s, s′) ∈ r1 ∨ (s, s′) ∈ r2) ∨ s′ ∈ Q}
= {s | ∀s′.(¬(s, s′) ∈ r1 ∧ ¬(s, s′) ∈ r2) ∨ s′ ∈ Q}
= {s | ∀s′.(¬(s, s′) ∈ r1 ∨ s′ ∈ Q) ∧ (¬(s, s′) ∈ r2 ∨ s′ ∈ Q)}
= {s | ∀s′.((s, s′) ∈ r1 → s′ ∈ Q) ∧ ((s, s′) ∈ r2 → s′ ∈ Q)}
= {s | (∀s′.(s, s′) ∈ r1 → s′ ∈ Q) ∧ (∀s′.(s, s′) ∈ r2 → s′ ∈ Q)}
= {s | ∀s′.(s, s′) ∈ r1 → s′ ∈ Q} ∩ {s | ∀s′.(s, s′) ∈ r2 → s′ ∈ Q}
= wp(r1, Q) ∩ wp(r2, Q)

2

Proving Correctness

• Key problem: How to prove valid Hoare triples?

{P} r {Q} ⇔ ∀s, s′ ∈ S.
(
(s ∈ P ∧ (s, s′) ∈ r)→ s′ ∈ Q

)
• Use notation ` {P} S {Q} to indicate that we can prove validity of

Hoare triple

• Hoare gave a sound and (relatively-) complete proof system that

allows semi-mechanizing correctness proofs

C. A. R. Hoare, �An Axiomatic Basis for Computer Programming�,

CACM, 12(1969) 576-580

3

Inference Rules

• Proof rules in Hoare logic are written as inference rules:

` {P1} S1 {Q1} · · · ` {Pn} Sn {Qn}
` {P} S {Q}

• Says if Hoare triples {P1} S1 {Q1}, · · · , {Pn} Sn {Qn} are provable

in our proof system, then {P} S {Q} is also provable

• Not all rules have hypotheses: these correspond to bases cases in the

proof

• Rules with hypotheses correspond to inductive cases in proof

4

Background: Inference Systems

• Example inference rule:

All great universities have smart students Premise 1

U Tehran is a great university Premise 2

U Tehran has smart students Conclusion

• Example inference rule:

e1 has type int Premise 1

e2 has type int Premise 2

e1 + e2 has type int Conclusion

5

Background: Inference Systems

• An inference system has two parts:

1. De�nition of Judgments

• Judgment: statement asserting a certain fact for an object

2. Finite set of Inference Rules

• An inference rule has:

1. a �nite number of judgments P1, P2, · · · , Pn as premises;

2. a single judgment C as conclusion

• If a rule has no premises, it is called an axiom

P1 P2 · · · Pn

C
(Rule name)

Premises above the line (0 or more)

Conclusion below the line

6

Background: Inference Systems

Example: Use an inference system to de�ne the set of even numbers

• Judgment: Even(n) asserts that n is an even number

• Inference rules:

- Axiom:

Even(0)
(Even0)

- Successor Rule:
Even(n)

Even(n+ 2)
(EvenS)

7

Background: Derivation Tree

Even(0)
(Even0)

Even(n)

Even(n+ 2)
(EvenS)

• To derive more judgments we create trees of inference rules

Even(0)
(Even0)

Even(2)
(EvenS)

Even(4)
(EvenS)

Even(6)
(EvenS)

• Does Even(1) hold?

• No, because there exists no possible derivation

8

Background: Derivation Tree

Even(0)
(Even0)

Even(n)

Even(n+ 2)
(EvenS)

• To derive more judgments we create trees of inference rules

Even(0)
(Even0)

Even(2)
(EvenS)

Even(4)
(EvenS)

Even(6)
(EvenS)

• Does Even(1) hold?

• No, because there exists no possible derivation

8

Background: Derivation Tree

Judgment

JudgmentJudgment

JudgmentJudgmentJudgment

Judgment

Axioms

Rules

9

Background: Less-than (Example)

Example: Use an inference system to de�ne the less-than relation

• Judgment: n < m asserts that n is smaller than m

• Inference rules:

- Axiom:

n < n+ 1
(Suc)

- Transitivity Rule:

k < n n < m

k < m
(Trans)

Exercise: Prove 0 < 3.

10

Understanding Proof Rule for Assignment

• Consider the assignment x := y and post-condition x > 5

• What do we need before the assignment so that x > 5 holds

afterwards?

• Consider i := i+ 1 and post-condition i > 1

• What do we need to know before the assignment so that i > 1 holds

afterwards?

11

Proof Rule for Assignment

` {A[x := e]} x := e {A}

To make sure that Q holds for x after the assignment of e to x, it

su�ces to make sure that Q holds for e before the assignment

Using this rule, which of these are provable?

• {y = 4} x := 4 {y = x}
• {x+ 1 = n} x := x+ 1 {x = n}
• {y = x} y := 2 {y = x}
• {z = 3} y := x {z = 3}

12

Exercise

Your friend suggests the following proof rule for assignment:

` {True} x := e {x = e}

Is the proposed proof rule correct?

13

Motivation for Consequence Rule

• Is the Hoare triple ` {z = 0} y := x {y = x} valid?
• Is this Hoare triple provable using our assignment rule?

• Instantiating the assignment rule, we get:

` {y = x[y := x]} y := x {y = x}
` {x = x} y := x {y = x}
` {True} y := x {y = x}

• Intuitively, if we can prove y = x w/o any assumptions,

we should also be able to prove it if we do make assumptions!

14

Hoare Rules: Consequence

Pre-condition strengthening, Post-condition weakening

` A′ → A ` {A} c {B} ` B → B′

` {A′} c {B′}

• Suppose we can prove {x ≥ 0 ∧ y < 2} c {x = 0 ∧ y ≤ 0}
• Which of the following Hoare triples can we prove?

y

x
1
2

pre-condition post-condition

y

x

{x ≥ 0 ∧ y ≤ 0} c {x = 0 ∧ y ≤ 0}
{x ≥ 0 ∧ y ≥ 0} c {x = 0 ∧ y ≤ 0}
{x = 5} c {y ≤ 1} 15

Hoare Rules: Consequence

Pre-condition strengthening, Post-condition weakening

` A′ → A ` {A} c {B} ` B → B′

` {A′} c {B′}

• Suppose we can prove {x ≥ 0 ∧ y < 2} c {x = 0 ∧ y ≤ 0}
• Which of the following Hoare triples can we prove?

y

x
1
2

pre-condition post-condition

y

x

{x ≥ 0 ∧ y ≤ 0} c {x = 0 ∧ y ≤ 0} X

{x ≥ 0 ∧ y ≥ 0} c {x = 0 ∧ y ≤ 0}
{x = 5} c {y ≤ 1} 15

Hoare Rules: Consequence

Pre-condition strengthening, Post-condition weakening

` A′ → A ` {A} c {B} ` B → B′

` {A′} c {B′}

• Suppose we can prove {x ≥ 0 ∧ y < 2} c {x = 0 ∧ y ≤ 0}
• Which of the following Hoare triples can we prove?

y

x
1
2

pre-condition post-condition

y

x

{x ≥ 0 ∧ y ≤ 0} c {x = 0 ∧ y ≤ 0} X

{x ≥ 0 ∧ y ≥ 0} c {x = 0 ∧ y ≤ 0} 7

{x = 5} c {y ≤ 1} 15

Hoare Rules: Consequence

Pre-condition strengthening, Post-condition weakening

` A′ → A ` {A} c {B} ` B → B′

` {A′} c {B′}

• Suppose we can prove {x ≥ 0 ∧ y < 2} c {x = 0 ∧ y ≤ 0}
• Which of the following Hoare triples can we prove?

y

x
1
2

pre-condition post-condition

y

x

{x ≥ 0 ∧ y ≤ 0} c {x = 0 ∧ y ≤ 0} X

{x ≥ 0 ∧ y ≥ 0} c {x = 0 ∧ y ≤ 0} 7

{x = 5} c {y ≤ 1} 7 15

Example

Using this rule and rule for assignment, we can now prove

` {z = 0} y := x {y = x}

Proof:

` {y = x[y := x]} y := x {y = x}
` {True} y := x {y = x}

z = 0→ True

` {z = 0} y := x {y = x}

16

Hoare Rules: Sequences

` {A} c1 {C} ` {C} c2 {B}
` {A} c1 ; c2 {B}

• To prove a sequence {A} c1; c2 {B} we must �nd an intermediate

assertion C

• Implied by A after c1 and implying B after c2

• (often denoted {A} c1 {C} c2 {B})

17

Exercise

` {A} c1 {C} ` {C} c2 {B}
` {A} c1 ; c2 {B}

• What is the intermediate assertion to prove the following Hoare

triple?

{true} x := 1; y := x {x = 1 ∧ y = 1}

Solution: (x = 1)

` {true} x := 1 {x = 1} ` {x = 1} y := x {x = 1 ∧ y = 1}
` {true} x := 1; y := x {x = 1 ∧ y = 1}

17

Exercise

` {A} c1 {C} ` {C} c2 {B}
` {A} c1 ; c2 {B}

• What is the intermediate assertion to prove the following Hoare

triple?

{true} x := 1; y := x {x = 1 ∧ y = 1}

Solution: (x = 1)

` {true} x := 1 {x = 1} ` {x = 1} y := x {x = 1 ∧ y = 1}
` {true} x := 1; y := x {x = 1 ∧ y = 1}

17

Hoare Rules: Conditional

` {A ∧ b} c1 {B} ` {A ∧ ¬b} c2 {B}
` {A} if b then c1 else c2 {B}

• Suppose we know A holds before if statement and want to show B

holds afterwards

• At beginning of then branch, we know A ∧ b we prove B holds

after executing the branch

• At beginning of else branch, we know A ∧ ¬b we prove B holds

after executing the branch

18

Exercise

` {A[x := e]} x := e {A}
` {A ∧ b} c1 {B} ` {A ∧ ¬b} c2 {B}
` {A} if b then c1 else c2 {B}

` {A} c1 {C} ` {C} c2 {B}
` {A} c1 ; c2 {B}

` A′ → A ` {A} c {B} ` B → B′

` {A′} c {B′}

• Under what condition {x > 0} holds after the following statement:

if (x < 0) then x := −x else x := x

Solution: x should not be 0 initially

` {(x < 0)} x := −x {x > 0}
` {(x 6= 0) ∧ (x < 0)} x := −x {x > 0}

` {(x > 0)} x := −x {x > 0}
` {(x 6= 0) ∧ (x ≥ 0)} x := x {x > 0}

` {x 6= 0} if (x < 0) then x := −x else x := x+ 1 {x > 0}

19

Exercise

` {A[x := e]} x := e {A}
` {A ∧ b} c1 {B} ` {A ∧ ¬b} c2 {B}
` {A} if b then c1 else c2 {B}

` {A} c1 {C} ` {C} c2 {B}
` {A} c1 ; c2 {B}

` A′ → A ` {A} c {B} ` B → B′

` {A′} c {B′}

• Under what condition {x > 0} holds after the following statement:

if (x < 0) then x := −x else x := x

Solution: x should not be 0 initially

` {(x < 0)} x := −x {x > 0}
` {(x 6= 0) ∧ (x < 0)} x := −x {x > 0}

` {(x > 0)} x := −x {x > 0}
` {(x 6= 0) ∧ (x ≥ 0)} x := x {x > 0}

` {x 6= 0} if (x < 0) then x := −x else x := x+ 1 {x > 0}

19

Hoare Rules: Loops

` {A ∧ b} c {A}
` {A} while b do c {A ∧ ¬b}

• Assertion A is a loop invariant: assertion that remains true before

and after every iteration of the loop

` {A ∧ b} c {A}
• Both a pre-condition for the loop (holds before the �rst iteration)

and a post-condition for the loop (holds after the last iteration)

20

Hoare Rules: Loops

` {A ∧ b} c {A}
` {A} while b do c {A ∧ ¬b}

Loop Invariant:

• What has been done so far and what remains to be done

• That nothing has been done initially

• That nothing remains to be done when b is false

20

Example

• Consider the statement (x, n ∈ Z)

S = while x < n do x := x+ 1

• Prove validity of {x ≤ n} S {x ≥ n}
• First Step: What is appropriate loop invariant?

x ≤ n

• First, we need to prove {x ≤ n ∧ x < n} x := x+ 1 {x ≤ n}
• Required proof rules: assignment, precondition strengthening

` {x ≤ n[x := x+ 1]} x := x+ 1 {x ≤ n}
` {x+ 1 ≤ n} x := x+ 1 {x ≤ n}

x ≤ n ∧ x < n→ x+ 1 ≤ n

` {x ≤ n ∧ x < n} x := x+ 1 {x ≤ n}

21

Example

• Consider the statement (x, n ∈ Z)

S = while x < n do x := x+ 1

• Prove validity of {x ≤ n} S {x ≥ n}
• First Step: What is appropriate loop invariant? x ≤ n

• First, we need to prove {x ≤ n ∧ x < n} x := x+ 1 {x ≤ n}
• Required proof rules: assignment, precondition strengthening

` {x ≤ n[x := x+ 1]} x := x+ 1 {x ≤ n}
` {x+ 1 ≤ n} x := x+ 1 {x ≤ n}

x ≤ n ∧ x < n→ x+ 1 ≤ n

` {x ≤ n ∧ x < n} x := x+ 1 {x ≤ n}

21

Example

• Let's instantiate proof rule for while with this loop invariant:

` {x ≤ n ∧ x < n} x := x+ 1 {x ≤ n}
` {x ≤ n} while x < n do x := x+ 1 {x ≤ n ∧ ¬(x < n)}

• Recall: We wanted to prove the Hoare triple

{x ≤ n} S {x ≥ n}
• In addition to proof rule for while, what other rule do we need?

postcondition weakening

22

Example

• Let's instantiate proof rule for while with this loop invariant:

` {x ≤ n ∧ x < n} x := x+ 1 {x ≤ n}
` {x ≤ n} while x < n do x := x+ 1 {x ≤ n ∧ ¬(x < n)}

• Recall: We wanted to prove the Hoare triple

{x ≤ n} S {x ≥ n}
• In addition to proof rule for while, what other rule do we need?

postcondition weakening

22

Proving Loops

A→ I ` {b ∧ I} c {I} I ∧ ¬b→ B

` {A} while b do c {B}

To prove the Hoare triple {A} while b do c {B}

• Find I and prove it is an invariant: ` {b ∧ I} c {I}
• Prove I is true at the start: A→ I

• Prove B is true after the loop: I ∧ ¬b→ B

23

Loop Invariant

Invariant

Exit Condition

Post Condition

Previous State

Initialization

Body Body

Body

24

Exercise

• Let's consider the for-loop statement:

for x := e1 until e2 do S

• Initializes x to e1, increments x by 1 in each iteration and

terminates when x > e2

• Write a proof rule for this for loop construct

25

Hoare Rules: Summary

` {A[x := e]} x := e {A}
` {A ∧ b} c1 {B} ` {A ∧ ¬b} c2 {B}
` {A} if b then c1 else c2 {B}

` {A ∧ b} c {A}
` {A} while b do c {A ∧ ¬b}

` {A} c1 {C} ` {C} c2 {B}
` {A} c1 ; c2 {B}

` A′ → A ` {A} c {B} ` B → B′

` {A′} c {B′}

26

