Introduction to Formal Methods

Lecture 8
Propagating Preconditions and Postconditions
Hossein Hojjat & Fatemeh Ghassemi

October 16, 2018

Review of Key Definitions

Hoare triple:

{P}r{Q} = Vs,s €S (sePA(s,s)er)—s €Q)

{P} does not denote a singleton set containing P but is just a notation
for an “assertion” around a command. Likewise for {Q}.

Strongest postcondition:

sp(P,r)={s'" | 3s.s € PA(s,s') er}
Weakest precondition:

wp(r,Q) = {s | Vs'.(s,s') e r = s € Q}

Hoare Rules: Summary

F{AAb} ¢; {B} F{AA b} co {B}
F{Alx:=¢€]} z:=e {A} F{A} if b then ¢; else ¢3 {B}

F{AAD} c {4} F{A} e {C} F{C} 2 {B}
F {A} while bdo c {AA-b} F{A} ¢1; c2 {B}

A" A F{A}c{B} - B> B
F{A'} c{B'}

Automating Reasoning in Hoare Logic

Manually proving correctness is tedious
e We'd like to automate the tedious parts of program verification

Idea: Assume an oracle gives loop invariants - we can then automate

the rest of the reasoning

This oracle can either be a human or a static analysis tool

e (e.g., abstract interpretation)

Generating VCs: Forwards vs. Backwards

{A} program {B}

Precondition Postcondition

Two ways to generate verification conditions: forwards or backwards

e A forwards analysis starts from precondition and generates formulas
to prove postcondition

Forwards technique computes strongest postconditions (sp)

In contrast, backwards analysis starts from postcondition and tries
to prove precondition

e Backwards technique computes weakest preconditions (wp)

Some Notations

e If Pis a formula on states and ¢ a command, let spy(P,c) be the
formula version of the strongest postcondition operator

e spp(P,c) is the formula @) that describes the set of states that can
result from executing ¢ in a state satisfying P

spr(P,c) =Q
implies
sp(({Z | P}, p(c)) ={Z | Q}

e We denote the set of states satisfying a predicate by underscore s,
i.e. for a predicate P, let P, be the set of states that satisfies it:

P, = {7 | P}

Forward VCG: Using Strongest Postcondition

Remember: {P.} p(c) {Qs} is equivalent to

sp(Ps, p(c)) C Qs

A syntactic form of Hoare triple is { P} ¢ {Q}

That syntactic form is therefore equivalent to proving

VZ.(spp(P,c) = Q)

e We can use the spy operator to compute verification conditions
such as the one above

e We next give rules to compute spp (P, ¢) for our commands such
that
(spp(P,c) = Q) implies (sp(Ps,p(c)) = Qs)

Assume Statement

Consider

e a precondition P, with FV(P) among Z and
e a property F', also with FV(F') among &

Assume Statement
sp(Ps, plassume(F))) = sp(Ps, Ar,)
= {«' | 3% € P,.(Z, ")
—{¢ | IZ e P,.(F=2a
= {2/ |2 € P, A0 € F,}
= P N F

So:

spp(P,assume(F))=PAF

Assignment Statement

e Consider (for simplicity) we have a single variable V' = {z}

e Let e(x) be an expression on x

sp(Ps, p(z = €))
={z' | x. x € P, A (z,2') € p(x =€)}
— {2’ | 3o (Plo = 0] A (&' = el = 20])}

In general:

spr(P,z = e) = Jxg.(Plx := xo] A x = e[z := x0))

Exercise

Precondition: {x > 10Ay > 5}

Code: x = x +y - 5

Exercise

Precondition: {x > 10Ay > 5}

Code: x = x +y - 5

spla >10ANy>5x = x +y - 5)=
Jxg.xg > 10Ny >bA Az =20+Yy—>5
SGyYy>o5ANr>y+5

Rules for Computing Strongest Postcondition

Sequential Composition

For relations we can prove

sp(Ps;r1012) = sp(sp(Ps,71),72)
Therefore, define

spr (P, c1; c2) = spp(spp(P;c1), c2)

Nondeterministic Choice (Branches)

For relations we can prove
sp(Ps, 11 Ure) = sp(Ps, 1) U sp(Ps, 72)
Therefore define:

spr(P,c1]| c2) = spp(P,c1) V spp(P, c2)

10

Size of Generated Formulas

The size of the formula can be exponential because each time we have a
nondeterministic choice, we double formula size:

(%)

pr(P, (c1 [€2); (cs [ea)) =

spr(spr(Pscr [c2),csl ca) =

spp(spr(P;c1) V spp(P,cz), c3 [ca) =

spp(spr(P;c1) V spp(P;cz2),¢3) V spp(spp(P;c1) V spp(P; cz2), cs)

11

Another Useful Characterization of sp

For any relation 0 C S x S we define its range by
ran(o) ={s' | 3s € S.(s,s’) € o}

Lemma: suppose that

e ACSandrC S xS
e A={(s,8)|seS}

Then

sp(A,r) =ran(A o)

12

Proof of the Previous Fact

ran(Agor) =ran({(x,z) | Jy.(x,y) € Aa N (y,2z) €1})
=ran({(z,2) | Jyzx=yNz € AN (y,z) €T})
=ran({(z,z) | z € AN (x,2) €T})
={z|xx € AN (z,2) €}
— sp(4,1)

13

Reducing sp to Relation Composition

The following identity holds for relations:
sp(Ps,r) = ran(Ap or)

Based on this, we can compute sp(Ps, p(c)) in two steps:

1. compute formula R(assume(P);c)
2. existentially quantify over initial (non-primed) variables

Indeed, if I is a formula denoting relation 7, that is,
T = {(fal?/) ‘ Fl(f7qu)}

then 37.F (%, #') is formula denoting the range of 71:

ran(ry) = {«' | IZ.F(Z,2)}

The resulting approach does not have exponentially large formulas.
14

Backward VCG: Using Weakest Preconditions

We derive the rules below from the definition of weakest precondition on
sets and relations

wp(r,Q) = {s | Vs'.(s,s') e r = s € Q}

Assume Statement
Suppose we have one variable x, and identify the state with that variable.

Note that p(assume(F)) = Ap,

WP(AngQs) ={z | VZ’/.(I,I/) €Ap, — a’ € Qs}
={z | Ve .(ze F,Az=2") > 2 €Q,}
={z|z€F,»z€Qs}={z|F—Q}

Changing from sets to formulas, we obtain the rule for wp on formulas:

wpp(assume(F),Q) = (F — Q) y

Assignment Statement

Consider the case of two variables. Recall that the relation associated
with the assignment x = e is

¥ =eny =y

Then we have, for formula @ containing x and ¥:

wp(p(z = e),{(z,y) | @})
{(z,y) | V'V 2’ =eny =y = Qlz =2,y =]}
{(z,y) | Qlz :=¢]}

From here we obtain a justification to define:

wpp(z = e,Q) = Qz := €]

16

Rules for Computing Weakest Preconditions

Sequential Composition

wp(r1 012, Qs) = wp(ri, wp(r2, Qs))
Same for formulas:

wpp(c1; c2, Q) = wpp(c1, wpp(c2, Q))

Nondeterministic Choice (Branches)

In terms of sets and relations

wp(r1 Ura, Qs) = wp(r1, Qs) N wp(ra, Q)

In terms of formulas

WpF(Cl H 027Q) = WpF(ClaQ) A WpF(627Q)
17

Reference

Mike Gordon and Héléne Collavizza, “Forward with Hoare",
Reflections on the Work of C. A. R. Hoare, 101-121, 2010.

18

