
Introduction to Formal Methods

Lecture 9

Veri�cation by Solving Horn Clauses

Hossein Hojjat & Fatemeh Ghassemi

October 21, 2018



Recap: Automated Veri�cation

Program

Speci�cation

Veri�er
Theorem

Prover

X

7

fail

1



Weakest Precondition Rules: Summary

c wp(c,Q)

x := e Q[x 7→ e]

assume(b) b→ Q

assert(b) b ∧Q

havoc(x) ∀y.Q[x 7→ y]

c1; c2 wp(c1,wp(c2, Q))

if b then c1 else c2 b→ wp(c1, Q) ∧ ¬b→ wp(c2, Q)

while b do c I ∧ ∀~y.
(

(I ∧ b→ wp(c, I)) ∧ (I ∧ ¬b→ Q)
)

[~x 7→ ~y]

(~x are variables modi�ed in c and I is the loop invariant)

2



Loop Invariant

` {A ∧ b} c {A}
` {A} while b do c {A ∧ ¬b}

wp(while b do c, Q)=I ∧ ∀~y.
(

(I ∧ b→ wp(c, I)) ∧ (I ∧ ¬b→ Q)
)

[~x 7→ ~y]

(~x are variables modi�ed in c and I is the loop invariant)

• Unfortunate reality: Inferring invariants automatically is undecidable

• This puts signi�cant limits on the degree to which we can automate

veri�cation

3



Loop Invariant

• Active research area:

how to �nd loop invariants e�ciently and automatically

• The simplest technique: guess-and-check!

• Given template of invariants (e.g., ? =?, ? ≤?), instantiate the holes

with program variables and constants

• Check if it's an invariant; if not, try a di�erent instantiation

• Abstract interpretation: popular approach to discover invariants

• Today we discuss an alternative approach: reducing veri�cation to

solving a set of Horn clauses

4



Motivating Example

x = 0;
while (x < N) {

x = x + 2;
}
assert (x 6= 13)

A→ I ` {b ∧ I} c {I} I ∧ ¬b→ B

` {A} while b do c {B}

To prove the Hoare triple {A} while b do c {B} we need an invariant I

(x)

• I is true at the beginning: A→ I

• I is preserved by the loop: ` {b ∧ I} c {I}
• B is true after the loop: I ∧ ¬b→ B

To prove the program we must solve for I:

I(x) ⇔ x ≡ 0 (mod 2)

5



Motivating Example

x = 0;
while (x < N) {

x = x + 2;
}
assert (x 6= 13)

A→ I ` {b ∧ I} c {I} I ∧ ¬b→ B

` {A} while b do c {B}

To prove the Hoare triple {A} while b do c {B} we need an invariant I(x)

• I is true at the beginning: A→ I x = 0→ I(x)

• I is preserved by the loop: ` {b ∧ I} c {I} I(x) ∧ x < N → I(x + 2)

• B is true after the loop: I ∧ ¬b→ B I(x) ∧ ¬(x < N)→ x 6= 13

To prove the program we must solve for I:

I(x) ⇔ x ≡ 0 (mod 2)

5



Motivating Example

x = 0;
while (x < N) {

x = x + 2;
}
assert (x 6= 13)

A→ I ` {b ∧ I} c {I} I ∧ ¬b→ B

` {A} while b do c {B}

To prove the Hoare triple {A} while b do c {B} we need an invariant I(x)

• I is true at the beginning: A→ I x = 0→ I(x)

• I is preserved by the loop: ` {b ∧ I} c {I} I(x) ∧ x < N → I(x + 2)

• B is true after the loop: I ∧ ¬b→ B I(x) ∧ ¬(x < N)→ x 6= 13

To prove the program we must solve for I:

I(x) ⇔ x ≡ 0 (mod 2) 5



Motivating Example

x = 0;
while (x < N) {

x = x + 2;
}
assert (x 6= 13)

A→ I ` {b ∧ I} c {I} I ∧ ¬b→ B

` {A} while b do c {B}

To prove the Hoare triple {A} while b do c {B} we need an invariant I(x)

• I is true at the beginning: A→ I x = 0→ I(x)

• I is preserved by the loop: ` {b ∧ I} c {I} I(x) ∧ x < N → I(x + 2)

• B is true after the loop: I ∧ ¬b→ B I(x) ∧ ¬(x < N)→ x 6= 13

To prove the program we must solve for I:

I(x) ⇔ x ≡ 0 (mod 2)

�Horn Clause�
contains at most one positive literal

5



Control Flow Graphs

• Control Flow Graph (CFG): graph representation of computation

and control �ow in the program

• Highlights the possible �ow of execution

• Useful program representation for many software analysis tasks

x = 0;
while (x < N) {

x = x + 2;
}

[¬(x < N)]

[(x < N)]

exit

entry

x′ = 0

x′ = x+ 2

6



Control Flow Graphs

Control-Flow Graph (CFG) of a program P is a rooted directed graph

G = (V,E, entry, exit) where

• V ⊆ Label is a set of labels

• E ⊆ Label× Action× Label is a set of arcs labeled by actions

• entry ∈ V is the start state

• exit ∈ V is the �nal state

Each action f ∈ Action is a relation on program state:

JfK ⊆ S × S

7



Generating Control-Flow Graphs

• Start with graph that has one entry and one exit node

• Draw an edge from entry to exit and label it with the entire program

exit

entry

program

• Recursively decompose the program to have more edges

with simpler labels

• When labels cannot be decomposed further, we are done

8



Basic Operations

• Base cases

Assignment

x′ = e

assume(e)

[e]

assert(e)

[e] [¬e]

error

• Sequence of statements

c1 ; c2 ⇒
c1

c2

9



Control Structures

• Conditional statement

if (e) c1 else c2 ⇒
[e]

c1

[¬e]

c2

[e]

• While loop

while (e) {c} ⇒ [e]
[¬e]

c

10



Exercise: Convert to CFG

while (c2) {
x = y − 1;
y = z ∗ 2;
if (c1) x = y − z;
z = 10;

}
z = x;

x′ = y − 1

[¬c2]

entry

[c2]

y′ = z × 2

[c1]

x′ = y − z

z′ = 10

z′ = x

[¬c1]

exit

11



Exercise: Convert to CFG

while (c2) {
x = y − 1;
y = z ∗ 2;
if (c1) x = y − z;
z = 10;

}
z = x;

x′ = y − 1

[¬c2]

entry

[c2]

y′ = z × 2

[c1]

x′ = y − z

z′ = 10

z′ = x

[¬c1]

exit
11



Example

• How to prove that the assertion does not fail in this program?

int n = 0;
while (true) {

n = n + 1;
assert (n≥−10);
n = n − 1;

}

12



Example

• How to prove that the assertion does not fail in this program?

int n = 0;
while (true) {

n = n + 1;
assert (n≥−10);
n = n − 1;

}

Control Flow Graph

P1[n = 0]

P2

error

n′ = n− 1 n′ = n + 1

[n < −10]

12



Example

• How to prove that the assertion does not fail in this program?

int n = 0;
while (true) {

n = n + 1;
assert (n≥−10);
n = n − 1;

}

Control Flow Graph

P1[n = 0]

P2

error

n′ = n− 1 n′ = n + 1

[n < −10]

• Let Pi(n) denotes a superset of reachable values of n in state Pi

• Initially we do not know the set of reachable values of n in each state

• Pi is a predicate on n, for example:

• P1(n) = (n ≥ 0) and P2(n) = (n = −5) ∨ (n > 0)

• P1(n) = (n = 0) and P2(n) = true (any value can reach it)

• ...

• We can write constraints between Pi's according to CFG
12



Example

• How to prove that the assertion does not fail in this program?

int n = 0;
while (true) {

n = n + 1;
assert (n≥−10);
n = n − 1;

}

Control Flow Graph

P1[n = 0]

P2

error

n′ = n− 1 n′ = n + 1

[n < −10]

∀n.

(n = 0) → P1(n)

∀n, n′. P1(n) ∧ (n′ = n + 1) → P2(n′)

∀n, n′. P2(n) ∧ (n′ = n− 1) → P1(n′)

∀n. P2(n) ∧ (n < −10) → false

12



Example

• How to prove that the assertion does not fail in this program?

int n = 0;
while (true) {

n = n + 1;
assert (n≥−10);
n = n − 1;

}

Control Flow Graph

P1[n = 0]

P2

error

n′ = n− 1 n′ = n + 1

[n < −10]

∀n.

(n = 0) → P1(n)

∀n, n′.

P1(n) ∧ (n′ = n + 1) → P2(n′)

∀n, n′. P2(n) ∧ (n′ = n− 1) → P1(n′)

∀n. P2(n) ∧ (n < −10) → false

12



Example

• How to prove that the assertion does not fail in this program?

int n = 0;
while (true) {

n = n + 1;
assert (n≥−10);
n = n − 1;

}

Control Flow Graph

P1[n = 0]

P2

error

n′ = n− 1 n′ = n + 1

[n < −10]

∀n.

(n = 0) → P1(n)

∀n, n′.

P1(n) ∧ (n′ = n + 1) → P2(n′)

∀n, n′.

P2(n) ∧ (n′ = n− 1) → P1(n′)

∀n. P2(n) ∧ (n < −10) → false

12



Example

• How to prove that the assertion does not fail in this program?

int n = 0;
while (true) {

n = n + 1;
assert (n≥−10);
n = n − 1;

}

Control Flow Graph

P1[n = 0]

P2

error

n′ = n− 1 n′ = n + 1

[n < −10]

∀n.

(n = 0) → P1(n)

∀n, n′.

P1(n) ∧ (n′ = n + 1) → P2(n′)

∀n, n′.

P2(n) ∧ (n′ = n− 1) → P1(n′)

∀n.

P2(n) ∧ (n < −10) → false

12



Example

• How to prove that the assertion does not fail in this program?

int n = 0;
while (true) {

n = n + 1;
assert (n≥−10);
n = n − 1;

}

Control Flow Graph

P1[n = 0]

P2

error

n′ = n− 1 n′ = n + 1

[n < −10]

∀n. (n = 0) → P1(n)

∀n, n′. P1(n) ∧ (n′ = n + 1) → P2(n′)

∀n, n′. P2(n) ∧ (n′ = n− 1) → P1(n′)

∀n. P2(n) ∧ (n < −10) → false

12



Example

• How to prove that the assertion does not fail in this program?

int n = 0;
while (true) {

n = n + 1;
assert (n≥−10);
n = n − 1;

}

Control Flow Graph

P1[n = 0]

P2

error

n′ = n− 1 n′ = n + 1

[n < −10]

∀n. (n = 0) → P1(n)

∀n, n′. P1(n) ∧ (n′ = n + 1) → P2(n′)

∀n, n′. P2(n) ∧ (n′ = n− 1) → P1(n′)

∀n. P2(n) ∧ (n < −10) → false

Solvable: P1(n) ≡ (n ≥ 0) and P2(n) ≡ (n ≥ 1)

12



Demo

• Try https://rise4fun.com/

∀n. (n = 0) → P1(n)

∀n, n′. P1(n) ∧ (n′ = n + 1) → P2(n′)

∀n, n′. P2(n) ∧ (n′ = n− 1) → P1(n′)

∀n. P2(n) ∧ (n < −10) → false

(set-logic HORN)

(declare-fun P1 (Int) Bool)

(declare-fun P2 (Int) Bool)

(assert (forall ((n Int)) (=> (= n 0) (P1 n) )))

(assert (forall ((n Int)(np Int)) (=> (and (P1 n) (= np (+ n 1)))

(P2 np))))

(assert (forall ((n Int)(np Int)) (=> (and (P2 n) (= np (- n 1)))

(P1 np))))

(assert (forall ((n Int)) (=> (and (P2 n) (< n (- 10))) false)))

(check-sat)

(get-model) 13

https://rise4fun.com/


Horn Clause

• Horn clause is an implication of the form:

∀v̄. Φ(v̄) ∧R1(v̄) ∧ · · · ∧Rn(v̄)︸ ︷︷ ︸
body

−→ R0(v̄)︸ ︷︷ ︸
head

• Φ(v̄) is an arithmetic formula (e.g. x + 2y ≤ z)

• Ri(v̄) is a relation symbol

• Head of the clause is either a relation symbol or false

• A solution for the Horn clause is an assignment of formulae to

relation symbols for which the implication is valid

14



Veri�cation by Solving Horn Clauses

Safety Description

Code
∀v̄ . Φ0(v̄) ∧ R01(v̄) ∧ · · · ∧ R0n(v̄)→ R00(v̄)

∀v̄ . Φ1(v̄) ∧ R11(v̄) ∧ · · · ∧ R1n(v̄)→ R10(v̄)

∀v̄ . Φm(v̄) ∧ Rm1 (v̄) ∧ · · · ∧ Rmn (v̄)→ Rm0 (v̄)

Horn Clause Solver

∀v̄ . Φi(v̄) ∧ Ri1(v̄) ∧ · · · ∧ Rin(v̄)→ false

15



Exercise

• Convert to Horn clauses

int x,y;
assume (x≥0 ∧ y≥0);
while(x 6=y) {

if (x>y) then x:=x−y;
else y:=y−x;

}
assert (x 6=−1);

16



Exercise

• Convert to Horn clauses

int x,y;
assume (x≥0 ∧ y≥0);
while(x 6=y) {

if (x>y) then x:=x−y;
else y:=y−x;

}
assert (x 6=−1);

P0

P1

[x ≥ 0]
[y ≥ 0]

P2

P3 P4

[x 6= y]

[x > y] [x ≤ y]

P5

[x = y]

[x = −1]

x′ = x− y y′ = y − x

(1)

(7)

(8)

(6)(5)

(3) (4)

(2)

error

16



Exercise

• Convert to Horn clauses

true → P0(x, y)

1) P0(x, y) ∧ (x ≥ 0) ∧ (y ≥ 0) → P1(x, y)

2) P1(x, y) ∧ (x 6= y) → P2(x, y)

3) P2(x, y) ∧ (x > y) → P3(x, y)

4) P2(x, y) ∧ (x ≤ y) → P4(x, y)

5) P3(x, y) ∧ (x′ = x− y) → P1(x′, y)

6) P4(x, y) ∧ (y′ = y − x) → P1(x, y′)

7) P1(x, y) ∧ (x = y) → P5(x, y)

8) P5(x, y) ∧ (x = −1) → false

P0

P1

[x ≥ 0]
[y ≥ 0]

P2

P3 P4

[x 6= y]

[x > y] [x ≤ y]

P5

[x = y]

[x = −1]

x′ = x− y y′ = y − x

(1)

(7)

(8)

(6)(5)

(3) (4)

(2)

error

16


