Introduction to Formal Methods

Lecture 9
Verification by Solving Horn Clauses
Hossein Hojjat & Fatemeh Ghassemi

October 21, 2018

Recap: Automated Verification

Theorem

Prover

Specification

Weakest Precondition Rules: Summary

c wp(c, Q)

T:=e Qlz— €]
assume(b) b—Q

assert(b) bAQ

havoc(z) Vy.Qz — y]

c1; 2 wp(c1, wp(cz, Q)

if bthency elsecy b — wp(c1,Q) A —=b — wp(ca, Q)

while bdo ¢ I/\ng’.(([/\b—>wp(c,[))/\(I/\ﬁb—)Q))[fi—mﬂ

(Z are variables modified in ¢ and I is the loop invariant)

Loop Invariant

F{AAb} c{A}
F {A} while bdoc {AA b}

wp(while b do ¢, Q):IAng.((IA b—wp(c,I)) A (I A—b— Q))[f'—> 7

(Z are variables modified in ¢ and I is the loop invariant)

e Unfortunate reality: Inferring invariants automatically is undecidable

e This puts significant limits on the degree to which we can automate
verification

Loop Invariant

e Active research area:
how to find loop invariants efficiently and automatically

e The simplest technique: guess-and-check!

e Given template of invariants (e.g., 7 =7, ? <7), instantiate the holes
with program variables and constants

e Check if it's an invariant; if not, try a different instantiation
e Abstract interpretation: popular approach to discover invariants

e Today we discuss an alternative approach: reducing verification to
solving a set of Horn clauses

Motivating Example

x = 0;

while (x < N) {
A—1T F{bAT} c{l} IN-b— B
X = x + 2;

} F {A} while b do ¢ {B}
assert (x # 13)

To prove the Hoare triple {A} while b do ¢ {B} we need an invariant [

e [is true at the beginning: A — I
e [is preserved by the loop: F {b AT} ¢ {I}
e B is true after the loop: I A—=b— B

Motivating Example

x = 0;
while (x < N) {
A—1T F{bAT} c{l} IN-b— B
X = x + 2;
} F {A} while b do ¢ {B}

assert (x # 13)
To prove the Hoare triple {A} while b do ¢ {B} we need an invariant I(x)
e [is true at the beginning: A — T x=0— I(x)

e [is preserved by the loop: F {b AT} ¢ {I} Iz)ANz <N — I(x+2)
e B is true after the loop: I A —=b — B I(z) AN=(x < N) =z # 13

Motivating Example

x = 0;

while (x < N) {
A—1T F{bAT} c{l} IN-b— B
X = x + 2;

} F {A} while b do ¢ {B}

assert (x # 13)

To prove the Hoare triple {A} while b do ¢ {B} we need an invariant I(x)

e [is true at the beginning: A — T x=0— I(x)
e [is preserved by the loop: F {b AT} ¢ {I} Iz)ANz <N — I(x+2)
e B is true after the loop: I A —=b — B I(z) AN=(x < N) =z # 13

To prove the program we must solve for I:

I(z) & 2 =0 (mod 2) 5

Motivating Example

x = 0;

while (x < N) {
A—1T F{bAT} c{l} IN-b— B
X = x + 2;

} F {A} while b do ¢ {B}
assert (x # 13)

To prove the Hoare triple {A} while b do ¢ {B} we need an invariant I(x)

e [is true at the beginning: A — I s =0—I(x) Sy

o Iis preserved by the loop: - {b AT} ¢ {I} | I(@)Az <N —=I(z+2)

e B is true after the loop: I A —=b — B A‘-\.I(:L') A=(z <N)—>z#13/
i G

contains at most one positive literal

To prove the program we must solve for I:

I(z) & 2 =0 (mod 2) 5

Control Flow Graphs

e Control Flow Graph (CFG): graph representation of computation
and control flow in the program

e Highlights the possible flow of execution

e Useful program representation for many software analysis tasks

entry
x = 0;
while (x < N) {
X = X + 2;
}

Control Flow Graphs

Control-Flow Graph (CFG) of a program P is a rooted directed graph
G = (V, E, entry, exit) where

e VV C Label is a set of labels

e F C Label x Action x Label is a set of arcs labeled by actions
e entry € V is the start state
e exit € V is the final state

Each action f € Action is a relation on program state:

[f1cs5xs

Generating Control-Flow Graphs

e Start with graph that has one entry and one exit node

e Draw an edge from entry to exit and label it with the entire program
entry

program
exit
e Recursively decompose the program to have more edges

with simpler labels

e When labels cannot be decomposed further, we are done

Basic Operations

e Base cases

assert(e)

Assignment assume(e)

¥=e €]

e Sequence of statements

C1; C2 i

Control Structures

e Conditional statement

I if (€) ¢y else ¢y —

e While loop

Iwhne @ = @[ﬁa

10

Exercise: Convert to CFG

while (c2) {

x =y — 1;
y = z * 2;
if (cl1) x =y — z;
z = 10;
}
zZ = X;

11

Exercise: Convert to CFG

while (c2) {

x =y — 1;
y = z * 2;
if (cl1) x =y — z;
z = 10;
}
zZ = X;

e How to prove that the assertion does not fail in this program?

int n = 0;

while (true) {
n =n + 1;
assert (n>—10);
n=n-—1,;

}

12

e How to prove that the assertion does not fail in this program?

om0 [= 0] —(B)

while (true) {

assert (n>-10);
peno b [n < —10]

12

e How to prove that the assertion does not fail in this program?

int n = 0; [nz()]—>

while (true) {
assert (n>—-10); @

n=mn-1; [n < —10]
i error

Let P;(n) denotes a superset of reachable values of n in state P;

Initially we do not know the set of reachable values of n in each state

P; is a predicate on n, for example:
e Pi(n)=(n>0)and Pa(n) = (n=-5)V(n>0)
e Pi(n) = (n=0) and Pz2(n) = true (any value can reach it)

e We can write constraints between P;'s according to CFG 15

e How to prove that the assertion does not fail in this program?
int n = 0; hl:(ﬂ‘%

while (true) {

assert (n>-10);
peno b [n < —10]
' error

12

e How to prove that the assertion does not fail in this program?

int o= 0; [’I’L:O]—)
while (true) { @
assert (n>-10);
peno b [n < —10]
' error
/

12

e How to prove that the assertion does not fail in this program?

int om o= 0; [n:O]—>

while (true) {

assert (n>-10);

non ol [n < —10]
' error
Pi(n)A(n=n+1) — Py(n)
Py(n)A(n'=n-1) — Pi(n)

12

e How to prove that the assertion does not fail in this program?

om0 [= 0] —(B)

while (true) {
assert (n>-10);

P b [n < —10]
' error
Pi(n)A(n =n+1) — Py(n)
Py(n)A(n =n—1) — Pi(n)
Py(n) A (n < —10) — false

12

e How to prove that the assertion does not fail in this program?

om0 [= 0] —(B)

while (true) {
assert (n>-10);

peno b [n < —10]
’ error
v, (=0 S A
Vnn. B A (W =n+1) = Py
Vn,n'. Pa(n) A (n' =n—1) — Pi(n))
Vn. Py(n)A(n < -10) — false

12

e How to prove that the assertion does not fail in this program?

om0 [= 0] —(B)

while (true) {
assert (n>-10);

peno b [n < —10]
’ error
Vo, (n=0) L)
Vnn. B A (W =n+1) = Py
Vn,n'. Pa(n) A (n' =n—1) — Pi(n))
vn Py(n) A (n < —10) — false

12

(
(
(
(
(

e Try https://risedfun.com/

Yn. (n=0) — Pi(n)
Vn,n'. Pi(n) A (' =n+1) — Pa(n)
Vn,n'. Pa(n) A (n' =n—1) — Pi(n)
VYn. Py(n) A (n < —10) — false
set-logic HORN)
declare-fun P1 (Int) Bool)
declare-fun P2 (Int) Bool)
assert (forall ((n Int)) (=> (= n 0) (P1 n))))
assert (forall ((n Int) (np Int)) (=> (and (P1 n) (= np (+ n 1)))
(P2 np))))
(assert (forall ((n Int) (np Int)) (=> (and (P2 n) (= np (- n 1)))
(P1 np))))
(assert (forall ((n Int)) (=> (and (P2 n) (< n (- 10))) false)))

(check-sat)
(get—-model)

13

https://rise4fun.com/

Horn Clause

e Horn clause is an implication of the form:

Vo. ®(0) A Ry (D) A+ A R, (T) — Ry(D)
N——
body head

e O(v) is an arithmetic formula (e.g. « + 2y < z)

R;(v) is a relation symbol

Head of the clause is either a relation symbol or false

e A solution for the Horn clause is an assignment of formulae to
relation symbols for which the implication is valid

14

Verification by Solving Horn Clauses

V. O(V) ARY(V) A - ARS(V) — RS(V) -
V. @Y V) ARI(V) A - ARLV) — RY(V)

?vv.¢m(v)AR1m(v)A'...ARg’(v)—>Rgv(v)a b o

V7. ®(V) ARL(V) A+ A RI(V) — false &

~NA

7 Horn Clause Solver
Safety Description

15

Exercise

e Convert to Horn clauses

int x,y;
assume (x>0 A y>0);
while (x#£y) {
if (x>y) then x:=x—y;
else y:=y—x;
}
assert (x#-—1);

16

Exercise

e Convert to Horn clauses

int x,y;
assume (x>0 A y>0);
while (x#£y) {
if (x>y) then x:=x—y;
else y:=y—x;
}
assert (x#-—1);

16

Exercise

e Convert to Horn clauses

true
Po(z,y) A (x> 0) A (y > 0)
Pi(z,y) A (z # y)
Py(z,y) A (z > y)
Pay(z,y) A (z < y)
Ps(z,y) A (2/ =x —y)
Pz, y) Ny =y —z)
Pi(z,y) A (z=1y)
Ps(z,y) A (z = —-1)

— — — D D O

0 ~J O U = W N =
T T A s

16

