
Palang Toy Language: Formal Description

Ramtin Khosravi

1 Introduction

Palang is a toy actor modeling language used to study various aspects of actor systems. An example of a
Palang model is illustrated in Figure 1. Palang is based on Rebeca: Reactive Objects Langauge, an actor based
modeling language, but has omitted a number of features to make it simpler. There is no notion of class in
Palang, and each actor is described individually. So, in the main block, only the messages that are sent to
initiate the computation are specified. An actor may send messages to any other actor, hence, there is no
‘knownrebecs’ part. Nondeterministic assignment is omitted from the set of statements, and a special ‘skip’
statement is introduced (that does nothing). The ‘initial’ messages no longer exist. It is assumed that all the
state variables are initialized to zero. If needed, an ordinary message must be used to initialize the variables.

A few syntactic changes are made to Rebeca too. The ‘statevars’ block no longer exists and the state
variables may be defined anywhere within the actor’s declaration. The keyword ‘msgsrv’ is also removed, and
the message servers are referred to as ‘methods’. Finally, the message send operator has been changed from ‘.’
to ‘!’ to give a more sense of asynchrony. The formal syntax of Palang is described in EBNF notation in Figure
2 (at the end of the article).

In this article, we describe the formal operational semantics of Palang using transition systems. Two types
of semantics will be defined for Palang based on fine- or coarse-grained execution of the methods.

2 Notation

In this article, we have tried to use standard notation wherever possible. This part reviews less standard
notations used in the rest of the article.

We use the following notations for working with sequences. Given a set A, the set A∗ is the set of all finite
sequences over elements of A. For a sequence a ∈ A∗ of length n, the symbol ai denotes the ith element of
the sequence, where 1 ≤ i ≤ n. In this case, we may also write a as 〈a1, a2, . . . , an〉. The empty sequence
is represented by ε, and 〈h|T 〉 denotes a sequence whose first elements is h ∈ A and T ∈ A∗ is the sequence
comprising the elements in the rest of the sequence. For two sequences σ and σ′ over A, σ ⊕ σ′ is the sequence
obtained by appending σ′ to the end of σ.

For a function f : X → Y , we use the notation f [x 7→ y] to denote the function {(a, b) ∈ f |a 6= x}∪{(x, y)}.
We also use the notation x 7→ y as an alternative to (x, y). For X ′ ⊆ X, we write f |X′ as the restriction of f to
X ′, i.e., {(x, y) ∈ f |x ∈ X ′}. Having two sequences a and b of the same size n, the function map(a, b) returns
the mapping of the elements of a into b such that map(a, b) = {ai 7→ bi|1 ≤ i ≤ n}, assuming that the elements
of a are distinct.

1 actor a {
2 int x;

4 n() {
5 x = x + 1;
6 if (x < 2)
7 b!m(x);
8 else
9 self !n();

10 }
11 }

13 actor b {
14 int i ;

16 m(int j) {
17 i = j + 1;
18 a!n();
19 }
20 }

22 main {
23 b!m(3);
24 }

Figure 1: An example Palang model

1

3 Abstract Syntax

To enable formal description of Palang semantics, we first provide an abstract specification of a Palang model’s
syntax. A Palang model consists of a number of actor declarations and a main block specifying initial messages
to the actors.

3.1 Actors

We assume each actor is an instance of the type Actor = ID × 2Var × 2Mtd , where:

• ID is the set of all actor identifiers in the model

• Var is the set of all variable names

• Mtd is the set of all method declarations

An actor (id , vars,mtds) has the identifier id , the set of state variables vars, and the set of methods mtds.
Each method is defined as the triple (m, p, b) ∈ MName×Var∗×Stat∗, where m is the name of the message the
method is used to serve, p is the sequence of the names of the formal parameters, and b contains the sequence
of statements comprising the body of the method.

3.2 Statements

The set of statements is defined as Stat = Assign ∪ Cond ∪ Send ∪ {skip}, where different types of statements
are defined as below.

• Assign = Var × Expr is the set of assignment statements. We use the notation var := expr as an
alternative to (var , expr).

• Cond = BExpr×Stat∗×Stat∗ is the set of conditional statements. We use the notation if expr then σ else σ′

as an alternative to (expr, σ, σ′).

• Send = (ID ∪ {self }) ×MName × Expr∗ is the set of send statements. We use the notation x!m(e) as
alternative to (x,m, e).

• skip is a predefined statement that has no effect.

The meaning of the above statements is straightforward. Expr denotes the set of integer expressions defined
over usual arithmetic operators (with no side effects). BExpr denotes the set of Boolean expressions defined
over usual relational and logic operators. We do not dig into the details of the expressions in this report.

3.3 Main Block

Having the above definitions, the set of Palang models is specified by 2Actor×Send∗, where the second component
corresponds to the main block consisting of a sequence of message send statements. Note that since there may
be more than one message to the same actor, the send statements are ordered in a sequence and not just a set
of statements.

3.4 Auxiliary Functions

We define the following auxiliary functions to be used in defining the formal semantics:

• body : ID×MName → Stat∗, in which body(x,m) returns the body of the method m of the actor identified
by x, appended by the special element endm, which denotes the end of the method.

• params : ID×MName → Var∗, in which params(x,m) returns the list of formal parameters of the method
m of the actor identified by x.

• svars : ID → 2Var which returns the names of the state variables of the actor identified by x.

2

3.5 Static Semantics

The following rules define the well-formedness of a Palang model which is hard to (or cannot be) described in
the Palang grammar, but may be statically checked.

Unique Identifiers. The actor identifiers are unique within a Palang model.

Unique Variables. The names of the state variables of an actor are unique.

Unique Methods. The names of the methods of an actor are unique.

Unique Parameters. The names of the formal parameters of a method are unique and different from the
state variables of the enclosing actor.

Type Safety. The model is well typed, i.e.,

• the expressions are well-typed,

• both sides of an assignment are of the same type,

• the conditions of the conditional statements are of type Boolean, and

• the receiver of a message has a method with the same name as the message.

Well-Formed Arguments. The list of actual arguments passed to a message send statement conforms to the
list of formal parameters of the corresponding method, in both length and type.

4 Operational Semantics

In this section, we describe the formal semantics of Palang in terms of transition systems. But before that, we
make a few definitions and assumptions.

We assume the set Val contains all possible values that can be assigned to the state variables or to be used
within the expressions. Here, we have Val = Z ∪ {True,False}. As the main focus is on the message passing
and interleavings of actor’s execution, we abstract away the semantics of expressions by assuming the function
evalv : Expr → Val evaluates an expression within the specific context v : Var → Val . We assume evalv is
overloaded to evaluate a sequence of expressions: evalv(〈e1, e2, . . . , en〉) = 〈evalv(e1), evalv(e2), . . . , evalv(en)〉.

4.1 States

We assume actors communicate via message passing and queue their incoming messages in a FIFO mailbox.
We define the type for the messages as Msg = MName × (Var → Val). In a message (m, a) ∈ Msg , m is the
name of the message and a is a function mapping argument names to their values. The mailbox of an actor is
defined as a sequence of messages, written as Msg∗.

The global state of a Palang system is represented by a function s : ID → (Var → Val) ×Msg∗ × Stat∗,
which maps an actor’s identifier to the local state of the actor. The local state of an actor is defined by a triple
like (v, q, σ), where v : Var → Val gives the values of the state variables of the actor, q : Msg∗ is the mailbox of
the actor, and σ : Stat∗ contains the sequence of statements the actor is going to execute to finish the service
to the message currently being processed.

4.2 Transitions

Here, we define the transitions between states that occur as the results of actors’ activities including: taking
a message from the mailbox, executing statements, and ending the execution of a method. The following SOS
rules define these transitions.

s(x) = (v, 〈(m, a)|T 〉, ε)
s→ s[x 7→ (v ∪ a ∪ {(self , x)}, T, body(x,m))]

(message take)

s(x) = (v, q, 〈var := expr |σ〉)
s→ s[x 7→ (v[var 7→ evalv(expr)], q, σ)]

(assignment)

s(x) = (v, q, 〈if expr then σ else σ′|σ′′〉) ∧ evalv(expr) = True

s→ s[x 7→ (v, q, σ ⊕ σ′′)]
(conditionalT)

s(x) = (v, q, 〈if expr then σ else σ′|σ′′〉) ∧ evalv(expr) = False

s→ s[x 7→ (v, q, σ′ ⊕ σ′′)]
(conditionalF)

3

s(x) = (v, q, 〈y!m(e)|σ〉) ∧ s(y) = (v′, q′, σ′) ∧ p = params(y,m)

s→ s[x 7→ (v, q, σ)][y 7→ (v′, q′ ⊕ 〈(m,map(p, evalv(e)))〉, σ′)]
(send)

s(x) = (v, q, 〈skip|σ〉)
s→ s[x 7→ (v, q, σ)]

(skip)

s(x) = (v, q, 〈endm〉)
s→ s[x 7→ (v|svars(x), q, ε)]

(end-of-method)

Now we can define the transition system semantics of a Palang model P as the triple TS (P) = (S,→, s0),
where:

• S is the set of global states (i.e., the set of all functions from actor identifiers to local states),

• → is the smallest relation defined by the above SOS rules, and

• s0 is the initial state as defined below.

In the initial state, all state variables have zero values and the messages specified in the main block are put
in the corresponding actors’ mailboxes: s0(x) = ({var 7→ 0|var ∈ svars(x)}, q(x, σ), ε), where q(x, σ) constructs
the initial mailbox of actor x from the sequence of send statements σ (from the main block) as defined below:

q(x, ε) = ε

q(x, 〈x!m(e)|σ′〉) = 〈(m,map(p, eval∅(e)))|q(x, σ′)〉
q(x, 〈y!m(e)|σ′〉) = q(x, σ′)

In the above definition, it is assumed that x 6= y and p = params(x,m). Note that since there are no local
variables defined in the main block, the context for evaluation of the arguments of the messages in this block is
the empty mapping (hence, eval∅ is used).

4.3 Big-Step Semantics

In Rebeca, the execution of the message servers (methods) are non-preemptive, i.e., when an actor takes a
message, it executes the entire body of the message server before starting execution of another message server.
This type of semantics is usually called big-step as opposed to our semantics description of Palang which is
small-step. To describe the big-step semantics of a Palang model P, we define the transition relation ⇒⊂ S2.

An actor in the local state (v, q, ε) is called idle, i.e., it is not in the middle of processing a message. A global
state s is idle, if s(x) is idle for every actor identifier x in the model. We use the notation idle(s, x) to denote
the actor identified by x is idle in state s, and idle(s) to denote all actors in s are idle.

Two global states s and s′ are in relation ⇒ iff both are idle, and there is a path between s and s′ in TS (P)

such that the first transition on the path is caused by an actor x “taking” a message (written as
tx−→), and

every other actor is idle throughout the entire path. Note that all outgoing transitions from an idle state are
“message take” transitions. Formally, s⇒ s′ iff

• idle(s) ∧ idle(s′), and

• ∃s1, s2, . . . sk ∈ S, x ∈ ID · s = s1
tx−→ s2 → . . .→ sk = s′ ∧ ∀y ∈ ID , 1 ≤ j ≤ k · y = x ∨ idle(sj , y).

This way, we can define the big-step transition system BTS (P) = ({s ∈ S|idle(s)},⇒, s0). Note that s0 is
defined as the same as the small-step transition system.

4.4 Labeling the Transition System

When defining the transition system semantics of Palang, we did not label the transitions with actions, nor did
we label the states with atomic propositions. Depending on the purpose the semantics is to be used, proper
labels may be attached to the states and/or transitions.

4

〈model〉 ::= 〈actor〉* 〈main〉

〈actor〉 ::= ‘actor’ 〈actor-id〉 ‘{’ (〈state-var〉 | 〈method〉)* ‘}’

〈state-var〉 ::= 〈var-decl〉 ‘;’

〈var-decl〉 ::= 〈type〉 〈var〉

〈method〉 ::= 〈message〉 ‘(’ 〈arg-list〉 ‘)’ ‘{’ 〈stat-list〉 ‘}’

〈arg-list〉 ::= ε | 〈var-decl〉 (‘,’ 〈var-decl〉)*

〈stat-list〉 ::= (〈statement〉 ‘;’)*

〈statement〉 ::= 〈assignment〉 | 〈conditional〉 | 〈send〉 | 〈skip〉

〈assignment〉 ::= 〈var〉 := 〈expr〉

〈conditional〉 ::= ‘if’ ‘(’ 〈expr〉 ‘)’ 〈stat-list〉 ‘else’ 〈stat-list〉

〈send〉 ::= 〈actor-id〉 ‘!’ 〈message〉 ‘(’ 〈expr-list〉 ‘)’

〈skip〉 ::= ‘skip’

〈expr-list〉 ::= ε | 〈expr〉 (‘,’ 〈expr〉)*

〈expr〉 ::= expressions over usual (side-effect free) operators

〈main〉 ::= ‘main’ ‘{’ (〈send〉 ‘;’)* ‘}’’

〈message〉 ::= 〈identifier〉

〈actor-id〉 ::= 〈identifier〉

〈var〉 ::= 〈identifier〉

〈type〉 ::= ‘int’

Figure 2: The grammar of Palang in EBNF – the detailed syntax for expressions is omitted

5

